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Abstract. The huge availability of data is giving organizations the op-
portunity to develop and consume new data-intensive applications (e.g.,
predictive analytics). However, data often contain personal and confi-
dential information, and their usage and sharing come with security and
legal risks; so there is the need of devising appropriate, task specific, data
release mechanisms to find the balance between advantages of big data
and the potential risks.
We propose a novel privacy-aware access control model, based on dif-
ferential privacy. The model allows for data access at different privacy
levels, generating an anonymized data set according to the privacy clear-
ance of each request. The architecture also supports re-negotiation of the
privacy level, in return of fulfilling a set of obligations. We also show,
how the model can address the privacy and utility requirements, in an
human-resource motivated use-case with a classification task. The model
provides a flexible access control, improving data availability, while guar-
anteeing a certain level of privacy.
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1 Introduction

Modern organizations have access to an increasing number of huge and diverse
data sets (big data), and new data-usage or data-businesses are emerging, such
as predictive analytics, benchmarking services, or data generation for testing.
However, the usage and sharing of data come with security and legal risks, and
it needs appropriate data release mechanisms. For example, part of data is often
constituted by personal information, which are subject to strict regulations, and
companies have to comply with them to use the data, to avoid major risks of
fines or reputation. In short, organizations are becoming more concerned with
setting up appropriate access control processes to better exploit data knowledge,
balancing advantages of big data with the potential security and legal risks.

In this context, risk-based access control models [1,2] provide an important
step towards a better management and exploitation of data. In fact, these mod-
els bring more flexibility, replacing (or integrating) pre-defined access control



policies, with access decisions based on the risk estimation of specific requests
compared to a user/role dependent risk thresholds. However, most of existing
risk-based access control models only support a binary access decision (i.e., the
outcome is either fully allowed or denied access), which is not the most conve-
nient approach to adopt, especially in a privacy context, where a third option
could be allowing access to a partial and/or sanitized (anonymized) version of
the data.

The anonymized data could still be useful enough for certain applications
(or even required), and expose to lower privacy-risk. We recently proposed an
extension to risk-aware access control systems, including data anonymization [3],
based on k-anonymity. Although widely used in practice, k-anonymity framework
(and the related family of syntactic privacy metrics [4]), is susceptible to various
attacks (e.g., [5]), and, in the last 10 years, another formal approach has been
proposed to provide strong privacy guarantee: differential privacy [6].

In this paper, we propose a privacy-aware access control model, which uses
differential privacy to reduce the disclosure risk. The model, in case the access
to raw data is not permitted, is able to provide a differential private data set,
according to the privacy clearance of the user. This allows for a more flexible
access, improving data availability, and at the same time, guaranteeing a formal
level of privacy.

The main contributions of the paper are as follows:

– We propose a privacy-aware access control model that evaluates access and
clearance decisions based on a privacy-preserving approach.

– We propose to use a differential private algorithm to enforce these decisions,
respecting the adequate privacy level.

– We define an architecture for our access control system, which integrates
a classical policy based access control, and also supports mechanisms for
(temporally) increasing privacy clearance.

– We implement a proof-of-concept prototype and run preliminary experi-
ments, to evaluate the utility of the data, using a simple classification task,
and the performance of the system.

Structure of the Paper: In the next section, we provide a motivating use case
for our work. In Section 3, we give a short overview on Differential Privacy.
In Section 4, we introduce our privacy-aware access control model. Section 5 is
dedicated to the description of the architecture of the access control framework.
In Section 6, we describe the experimental evaluation and discuss the main
results. In Section 7, we discuss the related work in terms of privacy- and risk-
aware access control approaches, and, in Section 8, we conclude with some final
remarks.

2 Use Case

Human Resource (HR) data are becoming increasingly important for the man-
agement of the company workforce. Whereas, traditionally, they were mostly



accessed in tabular form from the HR department and people managers, there is
nowadays a large number of additional analytics and functionalities to improve
HR key processes [7,8] (e.g., talent discovery, compensation process, trainings),
and, correspondingly, there is an increased need for access to HR data, reports
and analytics, involving multiple actors in the company. At the same time, HR
data contain sensitive and personal information, which is subject to, often com-
plex, data protection regulations, and data access should carefully manage.

For example, an HR manager can have a full view on the HR information
for her/his department, but an aggregated view for the HR data from other
departments. In some cases, for example employee survey results for collecting
employee feedback, a certain level of anonymity is needed even for the data
within the department. Legal framework, such as the European data protection
regulations [9], can additionally impose geographical constraints on access and
transfer of personal information.

HR data are also needed for the testing phase in the development of HR
applications. In this case, the data should not contain personal information, but
they should be realistic enough to allow for significant testing. So, an in-house
developer may have access in a controlled environment to an anonymized version
of the data. If the development task is outsourced to an external company, an
even stronger anonymized is likely needed.

HR data (e.g., compensation and healthcare cost data) are also sometimes
shared with external parties for benchmarking purpose (see e.g. Bureau of Labor
Statistics (BLS) [10]). and, for that scope, they need an high level of privacy
guarantees to be released.

The requirements of these illustrative examples can be summarized as in
Table 1.

Table 1. Possible usage scenarios, comprising different devices and locations, and
expected utility (i.e., type of reports needed) and security levels.

# Role Operation Risk Utility
1 HR manager HR view (int.) Low Risk full access
2 HR manager HR view (ext.) Medium Risk aggregated
3 HR developer Testing data Medium-High Risk anonymized
4 HR Benchmarking Benchmark High Risk anonymized

These scenarios show how a rather complex access control framework should
be set up to address the privacy requirements. Currently, in most cases, these
requirements are addressed with a mix of specific configurations of traditional
access control systems (e.g, RBAC systems for the HR manager use-case), usage
of specific anonymization tools (e.g., for releasing data for application testing
or benchmarking services), and, often, relying on human-based processes. In the
next sections, we will show how these scenarios can be realized in our framework.



3 Background

Differential privacy [6] is a privacy framework devised for providing a, for-
mal, strong privacy guarantee. Whereas, traditionally, privacy preserving data
publishing was based on syntactic privacy [4] mechanisms, where, for exam-
ple, it is imposed as condition that a record being indistinguishable from k
other records [11] (equivalence group), or the sensitive values to be well dis-
tributed within the equivalence groups [12,13], differential privacy takes another
approach, requiring that the answer to any query being probabilistically indistin-
guishable if a particular record is present in the database or not. In other words,
an adversary cannot learn (almost) anything about an individual record, since
the output does not (almost) change, whether that specific record is present or
absent in the data set. Following [14], we can define differential privacy, in the
context of privacy-preserving data publishing, as:

Definition 1. A randomized algorithm K satisfies ε-differential privacy if for
all pairs of data sets D,D′, differing for at most one record (D ∼ D′), and for
all possible anonymized data sets D̂, we have that:

Pr [K(D) = D̂] ≤ eε × Pr [K(D) = D̂]

where the probability is computed over the randomness of K, and the parameter
ε > 0 sets the bound of the privacy guarantee, with low values of ε providing
stronger privacy.

The mechanism for providing differential privacy (called ε-differentially pri-
vate sanitizer) is typically based on noise addition. There are two approaches:
interactive (for privacy-preserving data mining) and non-interactive (for privacy
preserving data publishing). Historically, differential privacy was devised for the
interactive framework [6]: a user sends a set of queries to a data base, and
the data base owner, to assure privacy, adds some random perturbation to the
query answer (e.g., adding Laplace noise with variance related to ε parameter).
Although the interactive framework is mostly used, it has some drawbacks [15],
e.g., after a limited number of queries the noise level should be increased, highly
impacting the utility.

In the non-interactive framework the database owner anonymizes the original
raw data, and then releases the anonymized version, providing the user a greater
flexibility for data analysis, and basically no limitation in terms of queries. In this
paper, we use the non-interactive framework, since we are dealing with access
control of tables, which is analogous to data publishing; it has been shown that
differential privacy can be used for data publishing [16,15,14], although with
some limitations (see [17]), and generic assumption on the utility needed (e.g.,
assuming that the analysis relies mostly on the counts of certain attributes).

In particular for deriving differential private data set for our evaluation (see
Sect. 6), we follow the approach of [14]. The method considers the raw data, and
it computes the contingency tables, counting the number of records sharing a a
combination of attributes. Then, it probabilistically (using an exponential mech-
anism) generates a generalized contingency table (generalizing attribute values



in wider classes). Then, it applies Laplacian noise to the generalized contingency
table. The generalization step allows to increase the counts for the cells, result-
ing in lowering the utility-impact of the noise addition. Synthetic data can be
produced from the generalized and randomized contingency table. The resulting
data set, generated by a ε-differential privacy mechanisms, can be safely used
for any data analysis (we will test it on a classification task, as in [14]).

4 Model

In this section we provide a general description of our Differential Privacy-Based
Access Control model for tabular data. The access control model we proposed
can be considered as an extension of the traditional policy based model, such as
XACML model [18], augmented with the possibility, once the access to the raw
data is denied, to get access to an anonymized version of the data.

Generally speaking, the model proceeds as follows: whenever a user/role
needs to access a data set, the access control model checks if the request can
be fulfilled, comparing the user/role access rights with the access control policy
of the data set. Differently from the classical policy based access control, the
system, in addition of a allow or deny decision, can deny access to the data set
in the raw version, but still provide the user with an anonymized version of the
data.

More formally, the access evaluation can be represented by the function
Auth(obj, u) defined as follows. User u1 is granted access to an object obj (say
the HR data of a department) if the access control policy of the object Pobj
includes user u (say the people manager of the department). The policy could
also specify, that the access is only provided to an anonymized version of the
data (say for the people managers of other departments), in this case, the system
retrieves the privacy clearance value, Tε, associated to the user/request, and it
applies the differentially private sanitizer (Sanitize(Tε)) to the original data to
attain a data set of differential privacy ε = Tε

2. Access is denied in the other
cases (say for people outside the company), i.e.,

Auth(obj, u) =


Allow if u ∈ Pobj
Sanitize(Tε) if {u, ε} ∈ Pobj
Deny otherwise

(1)

Where Tε(u,C) is the privacy clearance of the request, which depends on user u
and context information C (e.g., within the corporate network users may have
1 In most cases the dependency is mediated by roles and permissions. For the sake of
simplicity, we do not consider roles, and focused only on read access, for an extension
of this model including roles, we can follow the lines of access control risk models as
described in [19,20].

2 Note that the system may have already in the cache the anonymized data set, if
it had received the same data request at the same privacy clearance. In this case,
there is no need to re-anonymize the data, and it uses the already produced data
set, improving performance and security.



a larger clearance).

Note that the privacy clearance parameter Tε, here, plays a role similar to
the privacy budget [21] typically used for differential privacy models. But, in
our case, we only consider accessing disjoint sets of data, so each user/role can
spend all his/her budget for a single request, and he/she has access to data at
the same, or lower, level as the privacy clearance. This is similar to the security
clearance parameter in multi-level security models.

Adding the option of providing anonymized data can increase the flexibil-
ity and, ultimately, the access to data. On the other hand, especially for small
privacy clearance, Tε, the high level of anonymization can severely impact the
utility, making the data not usable. To this aim, we foresee mechanisms to (tem-
porarily) increase the privacy clearance, for example asking the user to fulfill
some obligations (as we proposed in [3]). The architecture described in Sect. 5
can support these Privacy Clearance Enhancement functionalities, but, we do
not discuss them in details in this study, focusing on data sanitization.

5 Architecture

In this section we present an abstract architecture for our Privacy-Aware Access
Control Framework. The architecture, depicted in Figure 1, is composed of three
main modules, which are described in the remaining part of the section.

Fig. 1. Architecture of the Privacy-Aware Access Control framework

Privacy-Aware Access Control Module is the entry point of the system,
through which users can submit requests to retrieve data from the underlying



database. This module evaluates the access request, and it grants access to
(original or sanitized version of) the requested data or denies access.
For this scope, the Privacy-Aware Access Control Module assesses the data
request against an access policy to determine whether the requester has
the needed authorizations to access the resource (requested data-view) and,
also, to evaluate the privacy clearance (as discussed in Sect. 4). Then, the
decision is enforced by calling the Privacy Enforcement Module or renegotiate
by calling the Privacy Clearance Enhancement Module.
The Privacy-Aware Access Control Module is based the on the XACML (eX-
tensible Access Control Markup Language) standard [18]. XACML is a declar-
ative fine-grained, access control policy language. The standard also provides
an access control architecture and a description of the access evaluation pro-
cess (data-flows, access request, access decision etc.)
In this module Access Control is realized internally using a PEP-PDP 3 pair.
A PIP (Policy Information Point) is used to provide additional information
needed to evaluate the request and estimate its privacy clearance (e.g., in
our use case if the requester is a manager, we would like to know her/his
department in order to define her/his privacy clearance, if the requested data
contains information about his department this clearance will be higher than
about an other departments)

Privacy Enforcement Module. After evaluation of the access request, the
Privacy Enforcement Module receives a data view (non-anonymized version)
and a privacy clearance value. The role of this module is applying data sani-
tization algorithms, and generating an anonymized version of this data view,
according to the privacy clearance.

Privacy Clearance Enhancement Module. The Privacy clearance defined
by the Privacy-Aware Access Control Module can be re-negotiated to a higher
level in some cases (e.g., for example if the utility of the anonymized data
is not sufficient) to allow more flexibility. The user can ask (temporally)
for higher clearance, in exchange, for example, of fulfilling some obligations
to mitigate the additional risk. These operations are typically expressed as
access and usage control obligations (see [3]), for example imposing deletion
of a resource after that a retention period expires, or providing stronger
authentication credentials.

6 Experimental Evaluation

In order to evaluate the practical feasibility of our approach, we developed a
proof-of-concept implementation of the framework, to assess: i) the impact of
3 In XACML the PDP is the point that evaluates an access request against an autho-
rizations policy and issues an access decision and the PEP Policy Enforcement Point
is the point that intercept user’s request, it calls the PDP for an access decision then
it enforces the decision by allowing or denying the access.



our privacy preserving access control on the data quality. To this aim, we defined
a simple classification task, and test the performance using data sanitized at
different privacy clearances. ii) to evaluate the impact of the enforcement of
different privacy clearance levels (anonymization by applying differential privacy)
on the performance of our access control system, in terms of response time.

To address these questions, we implemented a prototype of our Privacy En-
forcement Module as described in Sect. 5. As data sanitizer we used “DiffGen”
a Differentially-private anonymization algorithm based on Generalization, pro-
posed and implemented by Mohammed et al. in [14].

DiffGen anonymizes the raw data by probabilistically generalizing the at-
tributes. More in details, starting from the most general state (one-single group),
a set of specializations are randomly selected, using an exponential mechanism
with a predefined scoring function (e.g. a utility-based function assessing the
information gain for each specialization). Then, the algorithm computes the
contingency tables, counting the number of records sharing a combination of
attributes, and, it applies Laplacian noise, with variance ε, to the generalized
contingency table. Synthetic data can be then produced from the generalized
and randomized contingency table (see in [14] for details). The resulting data
set, generated by a ε-differential privacy mechanisms, can be safely used for any
data analysis.

In our case, to represent the use case, described in Sect. 2, ε will be expressed
on term of privacy clearance (Tε) as in Table 2.

Table 2. Example of Privacy Clearance levels for use case in Sect. 2.

# Role Operation Risk Privacy Clearance
1 HR manager HR view (int.) Low Risk Tε > 1
2 HR manager HR view (ext.) Medium Risk Tε ∈]0.1, 1]
3 HR developer Testing data Medium-High Risk Tε ∈]0.05, 0.1]
4 HR Benchmarking Benchmark High Risk Tε ≤ 0.05

For our test, we use the Adult Data Set 4 from the UCI Machine Learning
Repository. This dataset contains 45K records from the US Census data set with
15 demographic and employment-related variables (6 numerical , 8 categorical,
and 1 binary class column representing two income levels, ≤ 50K or > 50K).
The Experiments were conducted on an Intel Core i5 2.6GHz PC with 8GB
RAM.

Data Quality To evaluate the impact of anonymization on the Utility of data
we propose to assess its impact on the accuracy of a simple classifier trained and
tested using anonymized data at different clearance levels (shown in Table 2).

We use as (binary) class attribute the income level, ≤ 50K or > 50K, and as
classifier the well-known C4.5 Algorithm [22]. Each anonymized data set is split

4 Available at http://archive.ics.uci.edu/ml/datasets/Adult



in two. First part of the data (2/3) is used as training data to build a classifier,
and the remaining data (1/3) is used as test data to measure the classification
accuracy.

In Fig. 2, we report the accuracy of classifiers for different privacy clearances.
We can observe that for small values of Tε, the accuracy is highly impacted.

In fact with Tε = 0.01 the attributes are almost fully generalized, and the
accuracy is close to the case where all the attributes (but the class attribute,
of course) are removed. Still, the accuracy level of ' 75% could be enough for
many benchmarking tasks.

The accuracy goes up, as expected, for higher privacy clearance values. Pri-
vacy clearance in the range of [0.1, 0.5], still considered reasonably safe in practi-
cal cases, allows to produce data able to provide an accuracy close to 80%, which
it could be sufficient as testing data for development, and to have a general view
for a manager on other department analytics.

Privacy clearance > 1 (manager view on own team data, in our use case),
gives levels of accuracy close to the raw data ' 85%.

Fig. 2. Classifier Accuracy for different privacy clearance Tε. Each data point repre-
sent the average over 100 runs (parameters of DiffGen: number of specialization of
specialization Ns = 10, and scoring function u = Max).

Performance We estimate the computational overhead caused by the anonymiza-
tion. From these experiments, we observe that the time for performing the
anonymization can be easily of order of seconds, see Fig. 3. The effect of Tε
on the time is limited.

Despite being preliminary results, it is clear that for reaching real-time per-
formance (as it is possible for k-anonymity algorithms, see [23]), it is needed



to include some optimization, for example in terms of caching or testing other
algorithms for generating differential private data set.

Fig. 3. Anonymization time for different privacy clearance Tε. Each data point rep-
resent the average over 100 runs (parameters of DiffGen: number of specialization of
specialization Ns = 10, and scoring function u = Max).

7 Related Work

Several privacy-aware access control approaches where proposed in the literature
(see [24,25,26] for review), most of them rely on policies expressing privacy rules
and preferences to be enforced during or after access evaluation. For instance,
Purpose-based Access Control Systems [27] propose to evaluate access requests
based on the purpose of the access, and they allow conditional or unconditional
access only for specific proposes predefined in privacy policies. A related ap-
proach is based on the concept of Sticky polices [28], in this framework, privacy
policies, expressing users preferences for data handling, are attached to the data,
enabling to improve control over the usage of personal information and to define
usage constraints and obligations as data travels across multiple parties (e.g., in
the cloud). These policies based approach do not consider anonymization, nor
other risk mitigation strategies.

The model proposed in this paper is inspired by the risk-aware access control
models [1,29,2,30,31], in particular to the privacy risk aware access control model,
which we introduced in [3]. Typically in these risk-aware models, for each access
request or permission activation, the corresponding risk is estimated and, if
the risk is lower than a threshold (e.g., related to trust) then the operation



is permitted, otherwise it is denied. Cheng et al. [2] estimate risk and trust
thresholds from the sensitivity labels of the resource and clearance level of the
users in a multi-level-security system. They also consider a trust enhancement
mechanism (the authors call it risk mitigation strategy in their paper) that allows
users to spend tokens to access resources with risk higher than their trust level.
The details on how this mechanism can be applied in real cases are not provided.
Compared to these studies, we introduce the privacy clearance concept, which
plays a similar role of the clearance level in multi-level-security, but we focus on
privacy, and we explicitly define a data sanitization mechanism.

Chen et al. [1] introduced an abstract model which allows role activation
based on a risk evaluation compared to predefined risk thresholds. Trust val-
ues are considered, and they impact (decreasing) risk calculation. If risk is too
high, the model includes mitigation strategies, indicated as system obligations.
The paper does not specify how to compute the risk thresholds, trust, and the
structure of obligations. In a derived model [29], mitigation strategies have been
explicitly defined in terms of user obligations (actions that have to be fulfilled
by the user). The model also introduces the concept of diligence score, which
measures the diligence of the user to fulfill the obligations (as a behavioral trust
model), and impacts the risk estimation.

Another extension has been proposed [32,23], focusing on re-identification
risk and anonymization (based on k-anonymity) is used as mitigation strategy.

Although reminiscent to our approach, these models differ from our proposal
since: 1) we use a formal guarantee for privacy (differential privacy) 2) we do
not explicitly introduce the concept of risk, since it is very hard to estimate
risk for a data set generated by a differentially private mechanisms [33]. In fact,
unlike k-anonymity and related metrics, differential privacy is a property of the
mechanism not of the data set and, consequently, the risk estimation cannot be
immediately derived by the privacy parameter (ε) [34].

Our research is focused on the usage of differential privacy for access con-
trol, and as such it does not propose any novel algorithm for differential privacy.
Indeed, our experiments are based on the DiffGen framework proposed in [14].
For the differential privacy literature, we refer the reader to [4,6], as well as the
references introduced in Sec. 3.

8 Conclusions and future work

In this paper we proposed a novel privacy-aware access control model, based on
differential privacy. The model allows for data access at different privacy levels,
generating an anonymized data set according to the privacy clearance of the
request. To evaluate our approach we developed a proof-of-concept prototype.

The first experimental assessment, considering a HR related use case, and a
benchmarking data set, indicates that the model can address complex privacy
and utility requirements. However, it also presents a number of open issues to be
solved for a practical usage. For example, the performance of the current imple-



mentation, are not in real-time, therefore different algorithms and optimization
strategies for the anonymization need to be investigated.

In addition, whereas in previous models we used the concept of privacy risk,
which has a clear business interpretation, here we used the ε parameter of dif-
ferential privacy. In future works, we would like to relate the two approaches,
including explicitly privacy-risk assessment and adjustment mechanisms based
on the concepts of differential identifiability [34] and interactive differential pri-
vacy [6].

We also presented an architecture, which supports mechanisms for increasing
the privacy clearance of the user, we do not detail this part in the study, but we
will investigate it in future works, in particular how it could be realized using
obligations and how we can implement and enforce these obligations using the
access control policies.
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