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Abstract. Intrusion and threat detection systems analyze large amount
of security-related data logs for detecting potentially harmful patterns.
However, log data often contain sensitive and personal information, and
their access and processing should be minimized. Anonymization can
provide the technical mean to reduce the privacy risk, but it should
carefully applied and balanced with utility requirements of the different
phases of the process: a first exploration analysis needs less details than
an investigation on a suspect set of logs. As a result, a complex access
control framework has to be put in place to, simultaneously, address
privacy and utility requirements. In this paper we propose a trust- and
risk-aware access control framework for Threat Detection Systems, where
each access request is evaluated by comparing the privacy-risk and the
trustworthiness of the request. When the risk is too large compared to the
trust level, the framework can apply adaptive adjustment strategies to
decrease the risk (e.g., by selectively obfuscating the data) or to increase
the trust level to perform a given task. We show how this model can
provide meaningful results, and real-time performance, for an industrial
threat detection solution.
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1 Introduction

Big Data analytics for security, based on the correlation of security events from
several log files, play a key role in state-of-the-art threat detection and preven-
tion techniques [25,33]. Threat detection systems, as intrusion detection systems,
are typically characterized by an automatic pattern or anomaly detection phase,
which can highlight suspicious events, followed by a detailed investigation per-
formed by an human expert to decide if a real attack is detected or it is a false
positive. In this phase, the expert often inspects the raw data (log files) triggering
the alert.

However, log data often contain sensitive and personal information (e.g.,
user ids, IP addresses), and, although the security investigation can constitute a



legitimate purpose for their processing, the access and usage should be limited
to the relevant and necessary data to accomplish a specific analysis.

Anonymization is often used to pre-process the data, removing sensitive in-
formation from log files, and enabling further processing with minimal privacy
risk. However, this is achieved by deteriorating the quality or utility of the data.
Although some analytics can still be run on anonymized log data [18], in many
cases the anonymization can impact the quality of results, and, ultimately, de-
crease the ability to detect and react to cyber threats.

We propose a trust- and risk-aware access control framework for Threat
Detection Systems (TDS), which addresses the concerns described above. Our
framework does not require an a priori, i.e. off-line, anonymization of the data
sources. The automatic pattern detection phase uses the original dataset and
anonymization is applied only if further, human based, analysis is needed on the
resulting data.

The risk level of each data request is dynamically evaluated by the access
control decision point based on several parameters (e.g., context, role and trust-
worthiness of the requester), and, if needed, anonymization is applied on the
specific resulting data set. In this study, we focus on re-identification risk and,
following common practice, we use k-anonymity as risk metrics. However, our
approach is not bound to these choices and can be adapted to use alternative
metrics (e.g., l-diversity, t-closeness, and differential privacy). To summarize, the
approach has multiple advantages:

– it limits the impact on the utility, since we apply the anonymization only
after running the pattern detection on the original data, and we adapt the
anonymization strategy to the specific pattern.

– it provides a simple framework to address the, often conflicting, privacy and
utility requirements.

– it is based on concepts as trust and risk, which have an intuitive meaning in
the business world.

– it offers a flexible configuration, allowing to define a trade-off between secu-
rity and privacy suitable to the organization’s priorities (risk and trust levels
can be tuned to set a permissive or a restrictive access, the adjustment strat-
egy can be configured to optimize utility or performance priorities, etc..)

To evaluate the effectiveness of the proposed approach, we have developed
a prototype implementation and we experimentally evaluated it by running a
number of threat detection patterns based on the SAP Enterprise Threat Detec-
tion (ETD) solution. The results obtained (reported in 4.6) show that the model
can address the utility and performance requirements of a realistic use-case.

Structure of the paper In the next Section we provide a threat detection system
use case, which we use to illustrate the main features of our risk-aware privacy
preserving approach. In Sect. 3 we present a trust- and risk-aware approach
for privacy enhancing access control model and we describe its application on
the proposed use case Sect. 4 is dedicated to an experimental evaluation of the



proposed approach in terms or performance, scalability and data utility (after
anonymization). Lastly, we discuss the related work in Sect. 5 and we conclude
in Sect. 6 with some final remarks.

2 Use Case

Modern intrusion detection systems at application level (called Threat Detection
System, TDS, herein)1, collect security information on the application stack and
correlated it with context information, to detect potential threats.

A TDS, typically, first collects application level log files from various systems,
it enriches the logs with contextual (e.g., time, location) information, and finally
stores the events data in a database table.

The events data are then periodically automatically analyzed against pre-
defined threat patterns to detect potential anomalies and attacks. Any matching
with these patterns generates real time alerts. When an alert is raised a human
user is informed and actions must be undertaken to evaluate and react to the
alerts (e.g., investigate the validity of the alert or locate its cause). Figure 1
illustrates the architecture of the system, as well as the different users involved
in the process. For our purpose, two operations of the TDS are important:

Fig. 1. Business Roles and System Landscape

– Pattern detection. A pattern is a representation of a combination of suspi-
cious log events that could indicate a threat. It is often implemented as a set
of filters applied to the event database, and compared with some thresholds.
If this threshold is exceeded an alert is triggered. For instance the ensemble

1 We refer to these systems as TDS, to distinguish them from network level intrusion
detection systems (often called IDS or SIEM). Moreover, we base our description
on the SAP Enterprise Threat Detection, but the analysis could be applied to other
solutions, including IDS. For a comparison between application and network level
intrusion detection systems, see [16]



Table 1. Roles
Operator Classify alerts and report patterns anomalies His/Her tasks requires

access to pattern detection results (events/log data related to the
suspicious pattern) in case of alerts.

Administrator Has all Operator tasks and privileges. They can also Investigate
alerts, Create or Reconfigure patterns. He/She should have access
the detection results and events data related to the patterns.

Advanced
Administrator

Has all Administrator tasks and privileges. Can also grant excep-
tional access to the data by attributing higher trust level to an
Operator or an Administrator

of events indicating a Failed Login initiated by the same source (e.g., Termi-
nal) may indicate a Brute Force Attack if the number of attempts exceeds,
say, 20 attempts in less than 10 minutes.

– Investigating Alert. In this phase, an human operator investigates the alert,
to decide if this is an actual attack or a false positive. It may require access
to the details of the events triggering the alert, or at least of some attributes
of these events.

The Investigation phase implies that TDS Users access some detailed infor-
mation from the logs, we will provide some examples in Sect. 4.3. These Users
have different functions within the process of monitoring potential threats, in-
vestigating them and reacting. Table 1 gives an example of how you can divide
the user roles in the TDS, and the corresponding access authorizations required
to execute their tasks.

Log files contain personal information, such user names, IP addresses, etc,
and despite the security investigation can constitute a legitimate purpose for
their processing, it should be done according to the data minimization principle,
reducing the access to personal data. Therefore, TDS systems often perform
some (pseudo-)anonymization before analyzing the event data, such as replacing
real user name or IDs with pseudonyms.

However, with the increasing variety and complexity of collected log files,
a full anonymization of the log dataset before processing could, on one hand,
provide a good privacy protection, but also significantly impact the performance
of the system, both in terms of the utility (the quality of results of the pattern
detection phase, or the information available to the operator for the manual
inspection) and processing time (anonymization on large data set could be time
consuming, and on data stream re-run regularly)

To address this challenge, a more dynamic approach is needed: instead of
anonymizing the complete event data base beforehand, whenever an user per-
forms an operation accessing event tables, we have to apply specific anonymiza-
tion methods which reduce the privacy risk, but preserving the most relevant
information for that operation. In practice, the anonymization process should be
customized for each operation (to preserve the information useful for completing
the task) and for each type of users, which can have different level of access to



the data. In the next section, we will propose a framework that to realize this
scenario.

3 Privacy-Enhancing Risk-Based Access Control

In this section we provide a general description of our Trust- and Risk-Based
Access Control model, based on previous model we introduced in [1], and we
explain how it can be adapted to the use case described in Sect. 2.

3.1 Trust and Risk-Based Access Control

The framework evaluates access decisions using the trust and risk values re-
lated to the request. This access evaluation can be represented by the function
Auth(obj, u, p) defined as follows. User u is granted permission p on object obj
iff the trustworthiness of the incoming request is larger or equal to the risk, i.e.,

Auth(obj, u, p) =

{
allow if T (u,C)−R(obj, p, C) ≥ 0

adjustΣ(T,R) otherwise
(1)

Where T (u,C) is the trustworthiness of the request, which depends on user u
and context information C (e.g., security emergency) and R(obj, p, C) is the
risk, which depends on the requested object obj (e.g. a table a file.) and the
permission p (e.g., read or write) 2 and context C.

Access request in evaluated by comparing the risk of the access to the trust-
worthiness, which plays the role of risk threshold (in practice, the maximum
amount of risk that an user can take in a certain context): If T ≥ R access
is allowed, vice-versa if T < R, the access cannot be granted as is. However,
risk-based access control models have been originally devised to increase infor-
mation accessibility, and they tend to be more permissive (still keeping risk
under control) than traditional access control systems. Along this reasoning, in
case of T < R instead of denying access, the system can propose an adjustment
strategy σ ∈ Σ, to reach the condition T ≥ R. Clearly, there are two possi-
ble methods for adjustment strategies: (i) Risk mitigation, σR , (decreasing R),
or (ii) Trust enhancement strategies, σT , increase the trustworthiness T . Risk
mitigation strategies can include anonymizing the data, or imposing additional
obligations on data handling, whereas trust enhancement could be implemented
by (temporary) privilege escalation or provision of additional credentials [1] How-
ever each of these strategies is expected to have some negative side effects: for
example, anonymization degrades data quality, impacting utility or privilege es-
calation can increase the complexity of the security governance; accordingly, the
choice of the optimal strategy should balance the access control objectives with
the impact of the adjustment strategies.
2 In most cases the dependency of risk from permission is mediated by roles. For the
sake of simplicity, we do not consider here roles, for an extension of this model
including roles, we can follow the lines of the models described in [6].



If we focus on data access and privacy risk (as the use case in Sect. 2), and
limiting the adjustment strategies to anonymization, we should find an optimal
anonymization strategy σ̂R among all the possible anonymization strategies ΣR,
which allows for data access limiting risk (so fulfilling Eq. 1), and, at the same
time, maximizing the utility, after the strategy σR is applied: U(σR). This is can
be expressed as classical utility-privacy optimization problem:

σ̂R = arg max
σR∈ΣR

UσR(obj) (2)

s.t. RσR
≤ T (3)

In practical cases (as we will see in Sect. 3.2), the number of mitigation
strategies can be very limited, and the optimization problem is reduced to testing
a small set of anonymization strategies, and estimating either based on numerical
thresholds or expert assessment, if the utility is sufficient for the business task.
If this is not the case, trust enhancement mechanism can be triggered or access
is denied.

In the next subsections we will show how trust and risk can be modeled, with
a focus on the application to Threat Detection Systems.

3.2 Privacy Enhancing Approach

Risk Model: Risk in IT security is generally expressed in terms of the like-
lihood of occurrence of certain (negative) events times the impact [12]. In this
paper we will deal with the privacy breach risk. Privacy breaches are often asso-
ciated with the concept of individual identifiability, used in most data protection
privacy laws (e.g., EU data protection directive [23], Health Insurance Portability
and Accountability Act (HIPAA) [27]). To prevent individual identifiability the
regulation requires that disclosed information (alone or in combination with rea-
sonably available information from other sources or auxiliary informations [22])
should not allow an intruder: to identify individuals in a dataset (identity dis-
closure) or to learn private/sensitive information about individuals (attribute
disclosure) with a very high probability or confidence (see [32,29]).

To assess the privacy risk (when releasing a given dataset) various privacy
metrics have been proposed in the literature (see [4,10] for a review). The most
popular metric is k-anonymity [26]3.

In the k-anonymity approach attributes (or columns) in a dataset are classi-
fied as follows:

– Identifiers: Attributes that can uniquely identify individuals e.g., full name,
social security number passport number.

– Quasi-identifiers (QIs) or key attributes Attributes that, when combined,
can be used to identify an individual, e.g., age, job function, postal code

– Sensitive attributes: Attributes that contain intrinsically sensitive informa-
tion about an individual, e.g., diseases, political or religious views, income.

3 Other privacy metrics exist (for example, `-diversity, and t-closeness, see [13] ), but
k-anonymity is still a de-facto standard in real applications



In presence of identifiers the re-identification risk is clearly maximum (i.e.,
probability of re-identification P = 1), but even if identifiers are removed,
combining QIs individuals can be singled out and this implies a high risk. k-
anonymity condition requires that every combination of QIs is shared by at
least k records in the dataset. A large k value indicates that the dataset has a
low re-identification risk, because, at best, an attacker has a probability P = 1/k
to re-identify a data entry (i.e., associate the sensitive attribute of a record to
the identity of a User). Therefore the (re-identification) risk related to a k-
anonymous data-view v is:

risk(v) = 1/kv × I (4)

where I is the impact. In most cases any identity disclosure is considered
equally important, and, thus for simplicity sake we will set the impact I = 1 this
will allow us to normalize the risk and the trust values to [0, 1] (for a discussion
on the impact normalization, see [1]).

Trust Model: Several definitions have been proposed in for the concept of
Trust in the literature [15]. In this paper, trust plays the role of risk threshold:
a very trusted user is allowed to take a large risk (for a discussion on how
relating this definition with more classical trust metrics, see [1]. We assign trust
level Tuser(u) to the users according to their competence/roles and the tasks this
role is expected to fulfill (see Table 1). Following data minimization policy, a role
should have enough trust to access the resources (data) needed to fulfill these task
and not more. These values are assigned on a scale from 0 to 1, where 0 means
that basically no privacy risk can be taken, therefore impacting significantly the
quality of accessible data; and 1 means the role should be granted access to
maximum amount of data.

Note: the same request can be used to fulfill different tasks in different con-
texts for instance “Perform Maintenance and Improvement tasks” or “React to
a Security Incident” (if an alert is raised). In the latter the need to react to a
security threat overcomes the privacy requirements and the request should re-
ceive more permissive results thus have higher level of trust we will define the
two context-related trust levels as Tcontext(Alert) = 1 and Tcontext(noAlert) = 0

To compute the request trustworthiness (total trust value) we can use the
approach for multi-dimensions trust computation proposed in [20], where the
total trust is computed as weighted sum of trust factor values.

T =

n∑
i=1

Wi × Ti(βi) (5)

with{β1...βn} a set of trust factors and Ti() and Wi respectively the trust func-

tion and weight of the ith trust factors, with
n∑
i=1

Wi = 1 and T ∈ [0, 1]

We are in a 2-dimensions trust case thus we will express our total trust value
as the following



T (q) =W × Tuser(u) + (1−W )× Tcontext(c) (6)

Adjustment Strategies:

Risk Mitigation: A possible way to decrease the disclosure risk is anonymization.
Anonymization is a commonly used practice to reduce privacy risk, consisting
in obfuscating, in part or completely, the personal identifiable information in a
dataset. Anonymization methods include [9]:

– Suppression: Removal of certain records or part of these records (columns,
tuples, etc., such UserId column);

– Generalization: Recoding data into broader classes (e.g., releasing only a
Network prefixes instead of IP addresses etc.) or by rounding/clustering
numerical data;

Traditionally, anonymization is run off-line, but more recently risk-based access
control models, which use in-the-fly anonymization as mitigation strategy have
been proposed [2].

Trust Enhancement: Trust enhancement mechanisms can realized by asking
the user to provide additional guarantees (i.e., additional credential) or proofs
of obligation enforcement. In our case, we may require trust enhancement for an
emergency alert, where there is the need to increase the access to the original data
for investigation. This could be implemented as a change in the context, which
impacts the trust value according to Eq. 6, or simply increasing temporarily the
trust of an user Tu (privilege escalation).

4 Experimental Evaluation

We validate our approach by applying the described model to the scenario de-
scribed in Sect. 2. The threat detection system is expected to provide real time
and a accurate results. In this section of the paper we will investigate the impacts
our approach has on the functioning of the threat detection system and whether
the expected Performance and Utility matches the requirement of a real-time.

More in details, as mentioned in Sect. 2 the threat detection system allows
to automatically detect potential attack patterns, and then, if an additional
investigation is needed, a human operator can browse the log data of the events
corresponding to certain pattern for manual inspection.

Ideally, the Operator should be in the position to perform the manual anal-
ysis, so to decide if the detected pattern is a false or true positive, on data
where the personal information are anonymized (or in any case, where the re-
identification risk is low). In fact, if the operator has not sufficient information
to decide, they needs to access less anonymized (more risky) data, or in other
words to get higher access privileges (trust enhancement) getting Administrator
rights, or directly involving an Administrator.

Accordingly, we need to check:



– Utility. Does the model allow a low trusted operator (i.e., small risk thresh-
old) to perform the investigation in most cases, and relying on trust enhance-
ment for the remaining cases?

– Performance. Does the additional anonymization step impact real-time per-
formance?

Before addressing these questions (see Sect. 4.6), we need to describe our
prototype implementation (Sect. 4.1), the data set and its classification from a
privacy risk perspective (Sect. 4.2), the selection of typical patterns used for the
validation (Sect. 4.3), the utility measure (Sect. 4.5) and the trust level setting
(Sect. 4.4).

4.1 Prototype Implementation

We developed a prototype of our framework, based on the implementation de-
scribed in [3]. Our prototype is implemented in Java 8 and uses SAP HANA
Database. It is composed from 3 main modules:

– The Risk Aware Access Control module: mimics a typical XACML data flow,
providing an implementation of the PDP, the PEP and the PIP functionality
as well as a set of authorization policies.

– The Risk Estimation module: evaluates the privacy risk using pre-configured
criteria (privacy metrics, anonymization technique, identifying information).
It compares the privacy risk to the request trustworthiness level, then pro-
duces an estimation of the minimal anonymization to be applied in order to
meet this level.

– The Trust & Risk Adjustment module: we implemented the Risk Adjustment
Component to perform anonymization. It uses ARX [17] a Java anonymiza-
tion framework implementing well established privacy anonymization algo-
rithms and privacy metrics such as k-anonymity, `-diversity, t-closeness, etc.
(the Trust Adjustment Component was not implemented in this version of
the prototype.)

4.2 Data Set and privacy classification

To test the performance of our framework in the TDS use case, we used a data
set containing around 1bn record of log data collected from real SAP systems
deployed in test environment. The logs data set is composed 20 fields (in Table 2
we present a summery of the most important fields)

As described in Sect. 3.2, to anonymize a data set, we first need to formal-
ize our assumptions on the attributes that can be use to re-identify the entry,
or, in other words, classify the attributes in terms of identifiers, QIs and sen-
sitive attributes. This classification, typically, depends on the specific domain.
QIs should include the attributes a possible attacker is likely to have access
to from other sources, whereas sensitive attributes depend on the application
the anonymized data are used for. For example, in our experiments we set (obvi-
ously) User ID as an identifier, and the IP address as a quasi-identifier. Similarly,



Table 2. An extract of the Log dataset columns, privacy classification of each
column and anonymization technique to be applied

Log Events data set
Attribute Type Anonymization
EventID Non-Sensitive
Timestamp Sensitive
UserId (Origin) Identifier Suppression
UserId (Target) Identifier Suppression
SystemId (Origin) QI Generalization
SystemId (Target) QI Generalization
Hostname (Origin) QI Generalization
IPAddress (Origin) QI Truncation
MACAddress (Origin) QI Truncation
TransactionName Sensitive
TargetResource Sensitive

we assume that the Transaction name (the called function) cannot provide any
help for re-identification, therefore we consider it a sensitive attribute (and no
anonymization will be applied). Table 2 provides an example of this classifica-
tion, and, for identifiers and quasi-identifiers, the corresponding anonymization
methods applied.

***

AF EU

GER

hostA hostB

FRA

AM

l3

l2
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l0

Fig. 2. The generalization hierarchy for host names is organized as following: l1
and l2 are a location based generalization by country then by continent. in level
l3 host names are totally obfuscated and entirely revealed at the level l0.

4.3 Pattern detection and investigation

In our experiments we focus on 5 typically Patterns with different and increas-
ing complexity in terms of the size of the returned views and the privacy risk.
Two different kind of queries are used during each phase respectively Detection
Queries and Investigation Queries. The selected queries {Q1 ... Q5} described
in Table 3 are all Investigation Queries. An Investigation Query is a “SELECT *”
extracting all the details of the events corresponding to certain pattern.

4.4 Roles and Trustworthiness levels

We have 3 roles Operator, Administrator and an Advanced administrator with
increasing access requirements (to fulfill their tasks), and we that expect to



Table 3. Queries: Resulting views Size and Risk level
Query Corresponding Pattern View Size Risk Level
Q1 Brute Force Attack Large (50550) Very High (k = 2)
Q2 Security Configuration Changed Large (40300) Medium (k = 7)
Q3 Blacklisted Function Called Medium (14500) Very High (k = 1)
Q4 Table Dropped or Altered Small (228) Medium (k = 6)
Q5 User Assigned to Admin Group Very Small (12) Very High (k = 1)

require increasing privacy clearance, or in other words,to be able to accept larger
risk. Usually, for k-anonymity, k values in the range 3−10 are considered medium
risk, k > 10 low risk, and for k ≤ 2 the risk is very high (clearly, for k = 1 the
risk is the maximum, no anonymity) [24] . Therefore we propose the parameter
setting described in Table 4, where for sake of simplicity we have considered a
single trust factor T = Tu (i.e. we set W = 1 in Eq. 6).

Table 4. Users/Roles Privacy clearances and Trustworthiness levels

Role Access
Requirement

Privacy
Clearance

Trust Level
(Risk Threshold)

Operator Low Minimal (k > 10) Tu ∈ [0.05, 0.1[
Admin. Medium Medium (k > 2) Tu ∈ [0.1, 0.5[
Adv. Admin. High Maximum (k ≤ 2) Tu ∈ [0.5, 1]

4.5 Utility Evaluation

The effect of anonymization terms of utility is a widely discussed issue in the
literature several generic metrics have been proposed to quantify the “damage”
caused by anonymization (see [14] for a review). However, these metrics do not
make any assumption on the usage of the data (so called syntactic metrics),
limiting their applicability on realistic use-cases.

Other approaches propose to assess the accuracy loss (Utility loss) of a system
(i.e., IDS in [19], Classifier in [5]) by comparing the results of certain operations
run on original then anonymized dataset using use case related criteria ( i.e., in
the context of a TDS the comparison criteria can be the number False positives)

Although interesting for our context, this approach can not be applied in our
use case, since it assumes that the analysis is run directly on anonymized data,
whereas, in our use case, the pattern detection is performed on clear data, and
the anonymization is applied only on the results (data-view).

We propose a method combining both approaches and that would include an
evaluation:

– From Syntactic standpoint: The information loss caused by the anonymiza-
tion, we use the Precision Metric that allows us to estimate the precision
degradation of QIs based on the level of generalization with respect to the
generalization tree depth (e.g., for th generalization tree 2 if we allow access



to continent instead of host-names we used the 3rd level generalization out
of 4 possible levels so dp(hostnames) = 3/4 = 75% precision degradation for
host-names ).

– From Functional standpoint: The effect of this loss on our use case. During
the investigation phase, the operator, mostly, bases their analysis on a sub-
set of attributes, which are different for each attack pattern. Thus we will
assign a utility coefficient uc to different attributes based on the relevance
of the attribute to the pattern/query.

Combining the to approaches we compute the the utility degradation of a data-
view v as

Ud(v) =
∑
ai∈A

ucai × dp(ai) (7)

with A = {a1..ai} the set of attributes in the data set. We also set the precision
degradation of the identifiers to dp(identifiers) = 1 as they will be totally
suppressed after the anonymization.

4.6 Results and Analysis

For our experiments, we want to investigate: (i) Performance: the impact of on-
the-fly anonymization (as risk mitigation strategy) on the performance (response
time). (ii) Utility: we would like to investigate if the quality of resulting data
is generally enough to fulfill the expected tasks for every user/role for various
pattern investigation.

In order to evaluate these aspects we run several experiments considering 5
patterns and 7 users/role with different trustworthiness level, t = {0.055, 0.083}
Operators, t = {0.12, 0.15, 0.45} Administrators, and t = {0.9, 1} Advanced Ad-
ministrators. The corresponding size and anonymity level of the views returned
by the queries (corresponding to the selected patterns) are reported in Table 3.
In the rest of this section we will indicate both the queries and the corresponding
views as Q1, Q2, Q3, Q4 and Q5.

Performance and scalability To evaluate the the performance of our tool, in-
cluding the computational overhead caused by the anonymization, we run queries
Q1, Q2, Q4, and Q5 (described in Table 3) using our access control prototype
experiment, 100 times for each query to average out the variance of the response
time. In Figure 3 we report the results of the experiments for the four queries
for the 6 trustworthiness levels.

ForQ1, we observe that the anonymization process increases significantly the
response time. In fact when the query is carried out by the most trusted user
(t = 0.9), with no anonymization needed, the response time on average is less
then 15ms (see Figure 3.Q1, diagonally striped bar corresponding to t = 0.9). By
decreasing the trustworthiness of the requester the view must be anonymized and
the average response time increases to 150ms in the worst case (cf. Figure 3.Q1,
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Fig. 3. Average anonymisation time (horizontal striped bars) and average total
response time (diagonally striped bars) for Q1, Q2, Q4, and Q5 (data-views)
and 6 different users (trust levels).

diagonally striped bar corresponding to t = 0.055). This time difference is en-
tirely due to the anonymization time (130 ms, as shown in Figure 3,Q1, horizon-
tal striped bars corresponding to t = 0.055). Increasing the trust level decreases
the needed anonymization, but it slightly affects anonymization time. We can
observe a similar behavior in the other queries (see Figure 3, Q2, Q4, and Q5),
with an increase of response time when anonymization takes place and no signifi-
cant variations in performance for different levels of anonymization. For instance,
for Q2 and Q4 we have two views with an already medium level of anonymity
(respectively k = 7 and k = 6),the anonymization (when needed) still impacts
the performance in the same scale then Q1 and Q5 with very low anonymity
level (respectively k = 2 and k = 1).

From these experiments, we observe that when anonymization is applied the
response time increases, but, even in the worst cases, the increase is far less than
one order of magnitude, and, basically, it has no impact on the real-time response
of the system. Moreover, the application of different levels of anonymization
(different k in our case) have a small impact. We will investigate in the next
paragraph the effect of the data-view size on the Anonymization and Response
time.

Let us analyze the behavior of the anonymization time increasing the size
of the data set. Typically patterns run in limited time window (e.g., 10 to 30
minutes) producing small-sized data-views (i.e., in the range of 10 − 103). To
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Fig. 4. Average anonymization time variation according to data-view sizes ( for
trustworthiness t = 0.055).

investigate the scalability of our approach, in Figure 4, we report the aver-
age anonymization time variation for 5 different data-view {Q1 to Q5} (with
5 different sizes see Table 3) and a low trustworthiness level (t = 0.055, so
anonymization is always applied). As mentioned above, the worst case (around
5104 records) takes less than 150ms, and a linear extrapolation of the data al-
lows as to estimate the anonymization time for a 105 data view (so, 100 times
the typical size) around 200ms, which it can be safely considered as a real-time
response for our use case.

Fig. 5. Utility degradation by trust level for different queries

Utility: Trustworthiness levels (i.e., risk threshold) should be set to allow the
best a trade off between data exploitation and privacy protection. In our use case
we set our trustworthiness levels respecting a conventional distribution of privacy
risk levels presented in Table 4, and we would like to investigate the convenience
of this repartition by answering the following question: Do these trustworthiness
levels provide enough data (or data with enough utility) to allow each user/role
to fulfill their tasks described in Table 1. In Figure 5, we report the the utility



degradation according the six selected trustworthiness levels, representing the
3 roles (reported on the top of the figure). We can observe that the utility
degradation (obviously) decreases as we increase the trust level, with the limiting
case of t = 1 with no utility loss (and no anonymization) for the Advanced
Administrator. For most of the patterns (4 over 5, so except Q5), the Operator
role has a maximum utility loss of 30%, showing that the specific anonymization
transformations applied are strongly decreasing the risk, and limiting the impact
on the utility. That should allow to perform the analysis on the anonymized data,
without the need to enhance the trust level (so no need to get Admin rights).

In the case of Q5, the anonymization is not able to significantly decreases the
risk, without largely impacting the utility. In fact, the Operator is left with no
information (utility degradation = 1), and to analyze the result an increase of the
acceptable risk threshold (trust level) is needed. Enhancing trust (i.e. assigning
Admin rights to the Operator) could reduce the utility degradation in the 30%−
40% range, likely allowing the assessment of the pattern result. We should note,
that Q5 is particularly hard to anonymize, because it has a small amount of
events (around 10), and, since k-anonymity is measure of indistinguishability, it
needs strong anonymization.

Figure 5 also shows that in most cases increasing the trust level for Admin-
istrator or even Advanced Administrator (except of course for t = 1, where we
have no anonymization) the impact on utility degradation is moderate: for ex-
ample Q1 and Q4 are almost flat in the Administrator zone, similarly Q2 has
a first drop, and stays flat in the Administrator and Advanced Administrator
parts. In other words, increasing the risk thresholds, we could take more risk,
but we do not gain much in terms of the utility. This counter-intuitive effect is
mostly due to the difficulty to find an anonymization strategy able to equalize
the risk threshold. As mentioned in Sect. 3.1, in practical cases the number of
possible anonymization strategies is limited, and to fulfill the condition of Eq. 1
the final risk may be quite below the risk thresholds (trust values). In prac-
tice, in many cases, even increasing the risk thresholds (trust values), it is not
possible to find a more optimal (from the utility point of view) anonymization
strategy. In Fig. 5 we show the utility loss for four patterns both showing the risk
thresholds (dotted lines) and the actual risk achieved after the anonymization.
In the ideal case, the two curves should be the same, meaning that we could al-
ways find a transformation that equalize actual risk and risk thresholds (trust),
but in practice we see that we are often far from this optimal condition. For
example, for pattern Q2, with risk thresholds t = 0.15, t = 0.45 (Administra-
tor role) and t = 0.9 (Advanced Administrator), indicated with red circles, we
have the same value of utility degradation. In fact, the anonymization strategy
found for t = 0.15 case, corresponds to an actual risk of 0.14 (square dots with
a circle in Fig. 5, upper-right panel), so quite close to the threshold. Increasing
the thresholds to t = 0.45 and t = 0.9 (round dots with a circle in the figure),
no better strategies were found, so the same anonymization strategy is applied,
and clearly the final risk is still 0.14 (and utility is the same), well below the
thresholds. Similar effects are also present for the other patterns.



The experimental analysis shows that adapting the anonymization to the
specific patterns, we can mostly preserve enough information for the investiga-
tion, keeping the privacy risk low. In cases where this is not sufficient, typically
characterized by small data set, the trust enhancement strategy can support the
access to less-anonymized data.

5 Related Work

Privacy issues in intrusion detection: Privacy issues related to shearing
and/or using network and log data in IDS and TDSs has received a growing
interest in the last few years. Several analysis were proposed in the literature
to describe privacy breaches related to sharing and using log data and privacy
preserving approaches have been proposed to address these issues.

A strict enforcement of the need-to-know principle has been proposed for
reducing the likelihood of privacy violations. For example, Ulltveit-Moe et al.
in [31] propose to set two profiles of users according to the expertise level: the
first profile allows monitoring tasks using anonymized data the second consists
of security experts, with clearance to perform necessary privacy-sensitive opera-
tions to investigate attacks. This model clearly increases the privacy protection,
but it is hard to apply in realistic cases, since it relies on anonymizing the en-
tire (source) data set beforehand, resulting in either low privacy or low utility.
In our approach, we use a similar approach, strictly adopting the need-to-know
principle, but, as described in Sect. 3, the anonymization is dynamically only
on the data set resulting from a pattern, and according to the trust level of
the users/roles. As a result, we can use the better anonymization transformation
depending on the specific utility of each pattern, assuring an increase of both
privacy and utility.

Other works focus on specific anonymization techniques for logs (see [21] for
review), and on measuring the privacy risk. For example, in [30], the authors
use entropy to measure privacy leakage in IDS alerts. We implemented several of
the proposed anonymization techniques in our prototype, and, although based
on k-anonymity, our framework can include other privacy measures by changing
the risk function. More specifically, entropy based privacy metrics can be easily
integrated with k-anonymity approach, as shown in [18].

Risk Based Access Control systems: Several risk and trust based access
control models have been introduced in the last years. (e.g. [6,7,8,11,28]), where
for each access request or permission activation, the corresponding risk is esti-
mated and if the risk is less than a threshold (often related to trust) then the
operation is permitted, otherwise it is denied. Cheng et al. [8] estimate risk and
trust thresholds from the sensitivity labels of the resource and clearance level of
the users in a multi-level-security system. They also consider a trust enhance-
ment mechanism (the authors call it risk mitigation strategy in their paper) that
allow users to spend tokens to access resources with risk higher than their trust
level. The details on how this mechanism can be applied in real cases are not
provided.



Chen et al. [6] introduced an abstract model which allows role activation
based on a risk evaluation compared to predefined risk thresholds. Trust values
are considered, and they impact (decreasing) risk calculation. If risk is too high,
the model includes mitigation strategies, indicated as system obligations. The pa-
per does not specify how to compute the risk thresholds, trust, and the structure
of obligations. In a derived model [7], mitigation strategies have been explicitly
defined in terms of user obligations (actions that have to be fulfilled by the user).
The model also introduces the concept of diligence score, which measured the
diligence of the user to fulfill the obligations (as a behavioral trust model), and
impact the risk estimation. Another extension has been proposed [2,3], focusing
on re-identification risk and anonymization is used as mitigation strategy (as in
our paper).

Following the original Chen et al. [6] model, these papers consider trust
as part of the risk value. We can essentially map our model to the Chen et
al. [6] approach; in fact renaming the difference R − T as risk in Eq. 1, and
explicitly defining as a threshold the impact of risk mitigation, we obtain mostly
the same model as described in [6]. However, as we discussed in [1], explicitly
introducing the risk/trust comparison allows for: i) trust enhancement and risk
mitigation strategies are clearly separated, making easier to find an optimal set
of strategies to increase access, keeping risk under control, ii) trust thresholds
are not dependent on the risk scenario, and, if we consider multiple risk factors,
we can compare the overall risk with the trust. Our model addresses these issues,
clearly separating trust aspects from risk.

6 Conclusions and Future work

Motivated by a strong need to improve privacy protection in security monitor-
ing products, such as Threat Detection Systems, we proposed an access con-
trol model able to address their, complex, privacy and utility requirements. We
adapted a Risk-based Access Control approach (described in [2,1]) for a threat
detection solution, where anonymization is dynamically applied to reduce the pri-
vacy risk. Automatically applying specific anonymization strategies, in real-time,
for each pattern, we showed how this model is able to provide a simple solution
for investigating potentially harmful patterns, with a minimal privacy risk. In
the cases where significantly reducing risk results in an excessive degradation
of the quality of data, the model supports mechanisms of trust enhancement to
access less-anonymized data. We also showed that the anonymization step does
not impact the real-time performance of the systems for typical data set.

We based our analysis on real TDS, using a small sample of typical patterns.
A more extensive analysis is needed to be able to implement a robust solution.
In particular, the parameter setting (risk thresholds) can be complex in presence
of a large number of patterns. In addition, although widely used k-anonymity
has its own limitation, for example, in presence of multiple overlapping data
sets, it is well known that the k-anonymity condition cannot be fulfilled (lack



of composability). Other privacy models exist, such differential privacy, which
could be integrated in our framework.
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