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Risk-aware access control systems grant or deny access to resources based on the notion of
risk. It has many advantages compared to classical approaches, allowing for more flexibility,
and ultimately supporting for a better exploitation of data. We propose and demonstrate a
risk-aware access control framework for information disclosure, which supports run-time risk
assessment. In our framework access-control decisions are based on the disclosure-risk associ-
ated with a data access request and, differently from existing models, adaptive anonymization
operations are used as risk-mitigation method. The inclusion of on-the-fly anonymization al-
lows for extending access to data, still preserving privacy below the maximum tolerable risk.
Risk thresholds can be adapted to the trustworthiness of the requester role, so a single ac-
cess control framework can support multiple data access use cases, ranging from sharing data
among a restricted (highly trusted) group to public release (low trust value). We have developed
a prototype implementation of our framework and we have assessed it by running a number
of queries against the Adult Data Set from the UCI Machine Learning Repository, a publicly
available dataset that is widely used by the research community. The experimental results are
encouraging and confirm the feasibility of the proposed approach.

1 Introduction

The increase in the amount of data generated by to-
day’s digital society is astonishing. According to IDC esti-
mate [11], the global volume of digital data will double every
two years, reaching 44 trillion gigabytes by 2020. Potentially
organizations are now in the position to fully exploit these
huge amount of diverse datasets to create new data-based
businesses as well as optimizing existing process (e.g., real-
time customization). On the other hand, often, organizations
are not fully leveraging this potential due to the lack of ap-
propriate dissemination and control mechanisms, which sup-
ports risk-based decision making, balancing the advantages
of information access with the security. Personal information
is particularly critical, since they are subject to strict regula-
tions, and enterprises will have to comply with it to avoid
significant fines and impact on reputation. As a result, most
organizations strongly limit (even internally) the sharing and
dissemination of data making most of the information un-
available to decision-makers and therefore do not exploit the
power of existing data sources.

Already a few years ago, the JASON report [19] indicated
that the inflexibility of existing access control mechanisms
is a major obstacle with dealing with diverse data sources in
dynamic environments. To address this issue, access control
mechanisms based on risk estimation (i.e., risk-aware access

control) have been put forward [6]. In a nutshell, in risk-
aware access control access control decisions are based on
an estimation of expected cost and benefits and only not (as
in traditional access control systems) on a policy statically
defining stating which requests should be allowed and which
should be denied. In a risk-aware access control system, for
each access request, the corresponding risk is estimated and
compared with a risk-threshold. If the risk is less than a given
risk threshold, then access is granted, otherwise it is denied.
This allows for a better exploitation of the data than in tradi-
tional access control system while controlling risk. Although
existing risk-aware access control models enjoy many ad-
vantages and allow for a better management and exploitation
of the data, they suffer from a number of drawbacks which
limit its effectiveness. For instance, most existing risk-based
access control models only support binary access decision
(i.e., the outcome is either allowed or denied), whereas in
real-life we often have exceptions based on additional con-
ditions (e.g., I cannot disclose these data, because they con-
tain personal identifiable information, but I can disclose an
anonymized version of the data). In other words, the system
should enforce appropriate risk mitigation measures, and rel-
evant part of additional information could be shared. From a
risk perspective, such mitigation measures have the effect of
decreasing the risk associated with the release of the data.
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Anonymization is a commonly used practice to reduce pri-
vacy risk, obfuscating, in part or completely, the personal
identifiable information in a dataset. Anonymization meth-
ods include [7]: suppressing part of or entire records; gener-
alizing the data, i.e., recoding variables into broader classes
(e.g., releasing only the first two digits of the zip code)
or rounding/clustering numerical data; replacing identifiers
with random values (e.g., replacing a real name with a ran-
domly chosen one). To quantify the level of anonymity, sev-
eral metrics have been proposed in the literature (see [3, 8]
for a review). These metrics differ in a number of ways, but
they all express the risk of disclosing personal-identifiable in-
formation when releasing a given dataset. Anonymization in-
creases protection, by lowering the privacy risk, and enables
a wider exploitation of the data, but it clearly impacts the
utility of the data. Accordingly, different level of anonymiza-
tion should be considered depending on a number of factors,
often known at run-time only, such as the trustworthiness of
the requester or security context of the query.

In this paper, we propose and demonstrate a risk-aware
access control framework for information disclosure, which
addresses the concerns described above. In our framework
access-control decisions are based on the disclosure-risk as-
sociated with a data access request and, differently from
existing models, we include adaptive anonymization oper-
ations as risk-mitigation methods. The inclusion of on-the-
fly anonymization allows for extending access to the data,
still preserving privacy below the maximum tolerable risk.
Risk thresholds can be adapted to the trustworthiness of the
requester role, so a single access control framework can sup-
port multiple data access use cases, ranging from sharing
data among a restricted (highly trusted) group to public re-
lease (low trust value). To evaluate the effectiveness of the
proposed approach we have developed a prototype imple-
mentation of our risk-aware access control framework and
we have assessed it by running a number of queries against
the Adult Data Set from the UCI Machine Learning Repos-
itory, a publicly available dataset that is widely used by the
research community. The experimental results are encourag-
ing and confirm the feasibility of our proposed approach.

Structure of the paper. In the next Section we provide a
simple but realistic scenario that illustrates the main features
of risk-aware information disclosure. We then recall some
background notions on risk-aware access control (Section 3)
and privacy preserving information disclosure (Section 4).
In Section 5 we present our access control model for risk-
aware information disclosure and in Section 6 we illustrate
its application on the scenario introduced in Section 2. In
Section 7 we present an architecture for Risk-Aware Access
Control Framework. In Section 8 we discuss an experimental
evaluation of the proposed approach. We discuss the related
work in Section 9 and we conclude in Section 10 with some
final remarks.

2 Scenario

Employee surveys are a widely used instrument for or-
ganizations to assess job satisfaction, quality of manage-
ment, people motivation, etc. Considering the possible sen-
sitivity of data, surveys should be anonymous, meaning that
the organization and management should not be able to
identify how a specific employee responded. Usually, the
organization—say, a large company—conducting the survey
outsources the data collection to a third-party. When pro-
cessing the data, the third-party has access to individual-level
information, whereas the same data is not accessible to the
company. To protect the anonymity of the survey, the com-
pany can access the data under the condition that (i) identi-
fiers are removed and (ii) the number of respondents is larger
than a certain threshold (usually between 10 and 25). Differ-
ent splits of data can be requested (e.g., per organization, per
job profile, etc.), but data are accessible only if the query re-
sults contains a number of respondents that is larger than the
fixed threshold. On top of that, additional access control rule
can be enforced, e.g., a manager would only see data refer-
ring to his/her team or department (provided that conditions
(i) and (ii) are also fulfilled); an employee would be allowed
to see overall (company results) only. As an example, con-
sider a question like “Do you respect your manager as a com-
petent professional?” with a five points scale (1 to 5). A man-
ager could see the response of his/her team if at least, say, 10
people answered to it. If the manager decides to refine the
analysis asking for data related to the people in his/her team
AND with a “developer” role, again the response should be
made available only if at least 10 respondents with that role
answered to the question.1 Current systems typically do not
provide any data if the number of respondents is below the
defined thresholds (for the specific role). In other words, in
order to avoid the risk of disclosing too much information,
an overly conservative approach is taken and risky queries
are not permitted altogether. Ideally, the access control sys-
tem should be able to provide the largest possible amount of
information (still preserving anonymity) for any query. In
practice, in presence of queries that might cause anonymity
issues (i.e., not enough respondents, or more generally, too
small a result set), the system should be able to quantify the
disclosure risk associated with the query and compare it with
whatever risk level has been set as the acceptable threshold.
If the threshold is exceeded, the system could apply, for ex-
ample, a “generalization” operation (making the query less
specific), thus increasing the cardinality of the result set and
reducing the risk of disclosing the identity of respondents. Of
course, applying such an operation would not yield the exact

1In real surveys single records are actually never shown, but just
percentages, in this example it would be something like 10% an-
swered 1, 25% answered 2, etc. Since the number of respondents is
known, in practice, for one question, this equivalent of getting the
data with no identifiers.
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data set the user asked for, but this method would: 1) provide
some relevant (i.e., as close as possible to the original query)
information to the user, and 2) preserve anonymity according
to some pre-defined disclosure-risk levels (possibly linked to
the requestor trust or role).

In the next section,we discuss how to implement such a
system using risk-based access control, and anonymization
mitigation strategies.

3 Risk-Aware Access Control

We provide a brief presentation of the formal model for
Risk-Aware Access Control (RAAC) that has been intro-
duced in [5]. We use this model as the basis of our access
control model for risk-aware information disclosure that will
be presented later.

The RAAC model consists of the following components:

• a set of users U;

• a set of permissions P, usually representing action-
object pairs;

• a set of access requests Q, modeled as pairs of the form
(u, p) for u ∈ U and p ∈ P;

• a set of risk mitigation methods M, i.e., actions that
are required to be executed to mitigate risk;

• a function π mapping permissions into risk
mitigation strategies, i.e., lists of the form
[(l0,M0), (l1,M1), . . . , (ln−1,Mn−1), (ln,Mn)], where
0 = l0 < l1 < · · · < ln−1 < ln ≤ 1 and Mi ⊆ M for
i = 0, . . . , n;

• a set of states Σ, i.e., tuples of the form (U, P, π, τ)
where τ abstracts further specific features of the state;
for instance, in the Risk-Aware Role-Based Access
Control (R2BAC) model [4], τ comprises the set of
roles R, the user-role assignment relation UA ⊆ U ×R,
the role-permission assignment relation PA ⊆ P × R,
the role hierarchy �⊆ R × R, and the user trustworthi-
ness α : U → (0..1], the user-role competence func-
tion β : U × R → (0..1], and the role-permission ap-
propriateness function γ : R × P→ (0..1];

• a risk function risk : Q×Σ→ [0..1] such that risk(q, σ)
denotes the risk associated to granting q in state σ;

• an authorization decision function Auth : Q × Σ →

D × 2M with D = {allow, deny} such that if q = (u, p)
and π(p) = [(l0,M0), . . . , (ln,Mn)], and σ the current
state, then

Auth(q, σ) =

(di,Mi) if risk(q, σ) ∈ [li, li+1), i < n,
(dn,Mn) otherwise

where di ∈ D. Intuitively, if the risk associated with
access request (u, p) is l, then Auth returns an autho-
rization decision and a set of risk mitigation methods
corresponding to the interval containing l.

4 Privacy Preserving Information Disclosure

We assume that the data is represented as a relational ta-
ble, called private table. Each record in the table is relative
to a specific respondent. The attributes (columns) in the table
can be classified as follows:

• Identifiers. These are data attributes that can uniquely
identify individuals. Examples of identifiers are the
Social Security Number, the passport number, the
complete name.

• Quasi-identifiers (QIs) or key attributes [9]. These
are the attributes that, when combined, can be used to
identify an individual. Examples of QIs are the postal
code, age, job function, gender, etc.

• Sensitive attributes. These attributes contain intrinsi-
cally sensitive information about an individual (e.g.,
diseases, political or religious views, income) or busi-
ness (e.g., salary figures, restricted financial data or
sensitive survey answers).

Various anonymity metrics have been proposed in the lit-
erature (see [3, 8] for a review), the most popular being k-
anonymity [20], `-diversity [15], and t-closeness [13]. The
k-anonymity condition requires that every combination of
QIs is shared by at least k records in the dataset. A large
k value indicates that the dataset has a low identity privacy
risk, because, at best, an attacker has a probability 1/k to re-
identify a record (i.e., associate the sensitive attribute of a
record to the identity of a respondent). Consider now a table
with a group of k records sharing the same combination of
quasi-identifiers have the same sensitive attribute. Even if
the attacker is unable to re-identify the record, he can dis-
cover the sensitive information (attribute disclosure). The `-
diversity metrics was introduced to capture this type of risk.
It requires that for every combination of key attributes there
should be at least ` values for each confidential attribute. Al-
though, the `-diversity condition prevents the attacker from
inferring exactly the sensitive attributes, he may still learn a
considerable amount of probabilistic information: if the dis-
tribution of confidential attributes within a group sharing the
same key attributes is very dissimilar from the distribution
over the whole set, an attacker may increase his knowledge
on sensitive attributes (skewness attack, see [13] for details).
To overcome the problem, t-closeness estimates this risk by
computing the distance between the distribution of confi-
dential attributes within the group and in the entire dataset.
These measures provide a quantitative assessment of the dif-
ferent risks associated to data release, and each of them (or a
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combination thereof) can be applied to estimate privacy risk
depending on the use case at hand.

In this paper we will use k-anonymity as anonymity met-
rics to present our ideas, but it must be emphasized that the
approach can readily adapted to use alternative metrics (in-
cluding `-diversity and t-closeness).

5 Risk-Aware Information Disclosure

We now refine the RAAC model of Section 3 into our
model for Risk-Aware Information Disclosure. Let P be a set
of database views (or virtual tables). If p is a view, then |p|
denotes the anonymity of p according to some given metrics
(e.g. k-anonymity). The higher is the value of |p|, the smaller
is the risk to disclose sensitive information by releasing p.
Thus, for instance, we can define the (privacy) risk of dis-
closing p to be 1/|p| and the (privacy) risk of disclosing p to
u in σ = (U, P, π, τ) to be

risk((u, p), σ) =

1 if not grantedτ(u, p)
1/|p| otherwise

where grantedτ(u, p) holds if and only if u is granted access
to p according to τ. For instance, if τ is an RBAC policy
(U,R, P,UA,RA,�), then grantedτ(u, p) holds if and only
if there exist r, r′ ∈ R such that (u, r) ∈ UA, r � r′, and
(p, r′) ∈ PA.

When the risk associated to the disclosure of a certain
view p is greater than the maximal accepted risk t, we can
use obligations for obfuscating or redacting the view and
thus bring the risk below t. In this paper we consider k-
anonymization functions φk : P → P for k ∈ N as risk
mitigation methods, but functions based on other metrics can
be used as well. Clearly |φk(p)| ≥ k for all p ∈ P. We
then consider risk mitigation strategies of the form π(p) =

[(0, ι), (t, φd1/te(.))], where ι : P → P is the identity function
(i.e. such that ι(p) = p for all p ∈ P) and the following
authorization decision function:

Auth((u, p), π) =


(deny) if not grantedτ(u, p)
(allow, φd1/te(·)) if risk(u, p) ≥ t
(allow, ι) if risk(u, p) < t

(1)
that always grants access but yields an anonymized version
of the requested view if the risk is greater that the maximal
accepted risk t. In other words, if user u asks to access p, then
access to p is granted unconditionally if risk(u, p) < t, other-
wise an anonymized version of p, say φd1/te(p), is computed
and returned to u.

Example 5.1. To illustrate assume Alice asks for a view p1
such that |p1| = 4 and that π(p1) = [(0, ι), (t, φd1/te(.))] with
t = 0.1, i.e. π(p1) = [(0, ι), (0.1, φ10(.))]. It is easy to see
that risk(Alice, p1) = 0.25 and that Auth((Alice, p1), π) =

φ10(p1). Alice then asks for a view p2 such that |p2| =

20 and that π(p2) = π(p1) = [(0, ι), (t, φd1/te(.))] with
t = 0.1, i.e. π(p2) = [(0, ι), (0.1, φ10(.))]. It is easy
to see that now risk(Alice, p2) = 0.05 and therefore that
Auth((Alice, p2), π) = ι(p1) = p1.

The following results state that the risk of disclosing the
view returned by our authorization decision function is never
greater than the maximum accepted risk.

Proposition 5.1. Let (D,M) = Auth((u, p), π). Then
risk(u,M(p)) ≤ t.

In many situations of practical interest, we want the risk
of a query q = (u, p) to depend also on the trustworthiness of
the user u. This can be done by (re)defining the risk function
as follows:

risk((u, p), σ) =

1 if not grantedτ(u, p)
max{0, 1

|p| − α(u)} otherwise
(2)

where α : U → (0..1] is a function that assigns a trust value
to users.

When roles correspond to job functions, it is natural to
assign trust to roles and to derive the trust of a user from the
trust assigned to the roles assigned to that user in the follow-
ing way:

α(u) = max{α(r′) : (p, r′) ∈ PA and ∃r � r′ s.t. (u, r) ∈ UA}.

6 Application of Risk-Aware Role-Based Access
Control

We now show how our risk-aware information disclosure
model can be used to support the scenario of Section 2. This
will be done by setting appropriate values to the parameters
occurring in the definition of the risk function (2).

For sake of simplicity we consider a small company, with
8 employees and one manager. The company runs an em-
ployee survey, with one single question with answer rang-
ing in a five points scale (from 1 to 5) (sensitive attribute,
cf. Section 4), and collecting user names2 (the identifiers), as
well as the job title and the location of the office (the quasi-
identifiers). The actual dataset is in Table 1(a). To preserve
privacy we set the maximal acceptable risk to t = 0.125.

The outsourcing company collecting the data is consid-
ered fully trusted and will therefore have access to all the
information. We model this by setting the trust of the admin
role to 1, i.e. α(admin) = 1. Thus, an administrator can
access the original dataset, say pall with anonymity |pall| = 1
(i.e., all distinct values, see Table 1(a)), since α(admin) = 1
and the risk value is smaller than the threshold, i.e., 1 − 1 =

0 < 0.125. If we set the trust value of the manager role to

2In real cases they are typically user IDs
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Table 1
The Employee Survey Example

(a) Original dataset

Survey Administrator view
|pall| = 1

Name Job Location Answer
Timothy SeniorDeveloper Houston 4

Alice Support Houston 5
Perry JuniorDeveloper Rome 5
Tom Admin Rome 3
Ron SeniorDeveloper London 4

Omer JuniorDeveloper London 4
Bob Support Houston 5

Amber Admin Houston 3

(b) Anonymized version: identifiers and
quasi-identifiers are suppressed

Employee View
|psupp| = 8

Name Job Location Answer
*** *** *** 4
*** *** *** 5
*** *** *** 5
*** *** *** 3
*** *** *** 4
*** *** *** 4
*** *** *** 5
*** *** *** 3

0.21, i.e. α(manager) = 0.21 (corresponding to access views
with anonymity k ≥ 3), than a manager cannot access pall

as is, since 1 − 0.21 > 0.125 and some anonymization, as
risk mitigation strategy, must be carried out on the data to
decrease the risk. For example, if we suppress the identi-
fier attribute (Name) and the quasi-identifiers (Job and Lo-
cation), we obtain the view psupp shown in Table 1(b). The
view psupp corresponds to an anonymity level |psupp| = 8 and
since 0.125−0.21 < 0.125, access is granted to the manager.3

The manager can also ask for more granular views of the re-
sults. For example, if she wants to know the distribution of
the answers in one location, say Houston, |pHoust | = 4, the
risk 0.25− 0.21 = 0.04 is still smaller than t = 0.125. On the
other hand, if she asks for the result in Rome, |pRome| = 2,
then the risk associated with the view for the manager is
0.5−0.21 > 0.125 and the access is granted only if appropri-
ate anonymization is performed. In this case, location could
be generalized from Rome to EMEA (so including London
workforce), as shown in Table 2(b). The resulting view has
anonimity |pEMEA| = 4 and since the risk is smaller than
t = 0.125, then the manager is allowed to see the view.

Similarly, if the manager wants to see the results per
location and per job function (say in Rome for JuniorDe-

Table 2
Views of the employee survey for the Rome location

(a) Before generalization.

View: Location=Rome, |pRome| = 2
Name Job Location Answer
*** *** Rome 5
*** *** Rome 3

(b) After generalization

View: Location=Rome
Anoymized |pEMEA| = 4

Name Job Location Answer
*** *** EMEA 5
*** *** EMEA 3
*** *** EMEA 4
*** *** EMEA 4

Table 3
Views of the employee survey for Rome and JuniorDeveloper

(a) Before generalization of location and job

Loc=Rome AND Job=JuniorDeveloper
|pRome+JuniorDeveloper | = 1

Name Job Location Answer
*** JuniorDeveloper Rome 5

(b) After generalization of location and job

View Loc=Rome AND Job=JuniorDeveloper
Anonymized |pEMEA+Dev| = 3

Name Job Location Answer
*** Dev EMEA 5
*** Dev EMEA 4
*** Dev EMEA 4

veloper only, see Table 3(a)), the anonymity level is low,
|pRome+JuniorDeveloper | = 1, and the associated risk is greater
than t = 0.125. Again, instead of simply denying access,
the system can perform generalization on both the quasi-
identifiers, Job (generalized to the job family developer) and
Location, thereby increasing the anonymity (|pEMEA+Dev| =

3) and decreasing the risk (risk(manager, pEMEA+Dev) =

0.123) to an acceptable level for a manager (see Table 3(b)).

Finally, employees should have access to the global results
only. The trust value is therefore set to α(employee) = 0.125
and the only view permitted is with suppression of all iden-
tifiers and quasi-identifiers, which has |psupp| = 8, see Ta-
ble 3(b).

3In real surveys the result will appear as a report like: 37.5%
answered 5, 37.5% answered 4 and 25% answered 3. For a single
question this is equivalent to the view in Table 1(b).
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7 Risk-Aware Access Control Framework

This section presents an abstract architecture for our Risk-
Aware Access Control Framework. The architecture, de-
picted in Figure1, is composed of three main modules whose
role is described in the following.

Risk-Aware Access Control module. This module is the
entry point to our system, through which users can
submit requests to retrieve data from the underlying
database. The module evaluates the access authori-
sations of the data requestor and grants or denies ac-
cess. if the access is denied by the access policy the
request is rejected if it is granted the Risk-Aware Ac-
cess Control module will call the Risk Estimation
Module to determine the risk level of the query and
the Risk Mitigation Module to reduce risk as neces-
sary. This module is realized internally with a PEP-
PDP pair (a Policy Enforcement Point and Policy De-
cision Point respectively). A PIP (Policy Information
Point) is used to provide additional attributes (such as,
the user’s role and trustworthiness, and acceptable risk
threshold) that are needed to determine the risk level.
These additional attributes are passed to the Risk Esti-
mation module to compute the risk associated with a
particular query for a given user.

Risk Estimation module. The Risk Estimation module re-
ceives the user attributes and determines the level of
disclosure risk, based on the data that is requested and
on the criteria defined in the risk estimator configu-
ration. This configuration includes the metrics used
to estimate disclosure risk with respect to domain-
specific knowledge about what information is to be
considered critical or not.

Besides the evaluation of the risk, the Risk Estima-
tion module produces an estimation of the minimal
anonymization level to be applied in order to meet the
risk threshold (i.e., in case of k-anonymity, the risk es-
timation module computes the minimal value of k that
respects the risk threshold constraint).

Risk Mitigation module. The Risk Mitigation module is
activated by the Risk-based Access Control mod-
ule when the disclosure risk exceeds the acceptable
risk threshold for the requested resource. In such
a case, the Risk Mitigation Module applies the op-
timal anonymization operation (e.g., generalisation,
suppression) that is needed to reduce the disclosure
risk down to an acceptable level (that is, a level that
is equal or less than the threshold) while minimising
information loss.

8 Evaluation

This section documents the results of an initial evalua-
tion of our approach. The two questions we investigate are
(A) whether the approach described in this paper can be re-
alized in practice and (B) whether the performance that can
be expected under typical workloads matches the needs of
real-time (more precisely: online) operation.

In order to address question A, we realized a prototype
system that we have used to run sample scenarios. We use
the same prototype also to study the response time under sev-
eral representative conditions (queries of varying complexity,
different levels of user trust and therefore, different loads for
the anonymizer module).

In the following, we first describe our prototype imple-
mentation, then we present the dataset we used for the eval-
uation and outline the results of the experiments we run on
that dataset.

8.1 Prototype Implementation

In order to evaluate the practical feasibility of our ap-
proach, we developed a proof-of-concept implementation of
our framework (see Section 7) that we used to run the exper-
iments described in the following.

Our prototype is implemented in Java 7 and uses MySQL
Server version 5.6.20 to store the dataset. The Risk Aware
Access Control module mimics a typical XACML data flow,
providing a basic implementation of the PDP, the PEP, and
the PIP functionality as well as a set of authorization policies.
The Risk Mitigation module is implemented using the ARX4

anonymization framework [12]. The ARX toolkit offers a
Java API supporting data de-identification. ARX is capable
of altering input data in a way that guarantees minimal infor-
mation loss while ensuring that the transformed data adheres
to well-defined privacy criteria, expressed in such metrics as
k-anonymity, `-diversity, t-closeness, etc. ARX also offers
several reporting features allowing to collect metrics such as
execution time, information loss, etc. We evaluated other
available anonymization libraries (e.g., Cornell Anonymiza-
tion Toolkit5, University of Texas Anonymisation Toolbox6).
We eventually adopted ARX because we found it easy to in-
tegrate and considering that it is a well-documented, actively
developed, and well maintained project.

8.2 Dataset

To test the performance of our framework, we used
a dataset that is widely used in the research community,
namely the Adult Data Set 7 from the UCI Machine Learning

4http://arx.deidentifier.org/overview/
5http://anony-toolkit.sourceforge.net/
6http://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php
7Available at http://archive.ics.uci.edu/ml/datasets/Adult
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Figure 1. Architecture of the Risk-Aware Access Control framework

Repository. This dataset contains 32561 records from the
US Census dataset with 15 demographic and employment-
related variables. We removed records with missing values,
ending with 30, 162 usable records, and we reduced the num-
ber of fields to nine, as shown in Table 4.

The choice of the identifiers, QIs and sensitive attribute
set, typically, depends on the specific domain. QIs should in-
clude the attributes a possible attacker is likely to have access
to (e.g., using a phonebook or a census database), whereas
sensitive attributes depend on the application the anonymized
data are used for.

Generally speaking increasing the number of QIs in-
creases the risk, or results in strong anonymization impacting
the usefulness of the resulting view. In our experiments we
set QI ≡ {AGE,NATIVE-COUNTRY}. In the census data,
the SALARY-CLASS attribute is typically chosen as a sensi-
tive attribute. We also classified RACE as a sensitive attribute
because of its discriminatory nature.

QIs will be generalized according to the generalisation
scheme of Figure 2 (for the attribute AGE) and Figure 3 (for
the attribute NATIVE-COUNTRY).

8.3 Experiment and Results

In order to evaluate the performance of our tool, including
the computational overhead caused by the anonymization en-
gine, we used a number of queries of increasing complexity
in terms of the size of the returned views and the disclosure

Table 4
Summary of the dataset columns, number of distinct values,
and nature of each column

UCI Adult Dataset
Attribute Values Nature
AGE 72 QI
NATIVE-COUNTRY 41 QI
EDUCATION 16 not Sensitive
OCCUPATION 14 not Sensitive
WORKCLASS 7 not Sensitive
MARITAL-STATUS 7 not Sensitive
GENDER 2 not Sensitive
RACE 5 Sensitive
SALARY-CLASS 2 Sensitive

risk. The queries are given in Table 5 and the corresponding
size and anonymity level of the views returned by our tool are
reported in Table 6. In the following we will indicate both the
queries and the corresponding views as Q1, Q2, Q3, Q4.

For our experiments, we want to investigate the impact
of risk mitigation, anonymization, on (i) the performance of
the access control system and (ii) the quality of the resulting
data. For case (i) we focus on the views with the largest
sizes (namely, Q1 and Q2, with more than 20,000 tuples
each as shown in Table 6). For case (ii) we focus on the
views with the highest risk profiles (namely, Q1, Q3, and
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(...)

(...)

A5

A4
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A2

A1

Figure 2. Generalization hierarchy for the attribute AGE [17,
99]. Level A1: Age is generalized in 5 year range. Level A2
in 10 year range. Level A3 in 20 years. Level A4 in 40 year
range. In level A5 the age is fully generalized. Age is not
generalized in level A0 (not shown).

(***)

US

US

US

Out-of-US

AmExUS

NAmExUS SAm

As

As

Eu

Eu

NC4

NC3

NC2

NC1

Figure 3. Generalization hierarchy for the attribute NATIVE-
COUNTRY: Level NC1: NATIVE-COUNTRY is general-
ized to US (United States), AmExUS (America Exclud-
ing United States), Asia (As), or Europe (Eu). Level
NC2: NAmExUS (North America Excluding United States)
and SAm are generalized to AmExUS (America Excluding
United States). Level NC3: All countries excluding United
States are generalized to Out-of-US. Level NC4: native coun-
tries are suppressed. Level NC0: native countries are not
generalized (not shown).

Q4, with the lowest possible anonymity), whose computa-
tion is significantly affected by anonymization. We consider
five risk thresholds α i.e. users/role with different trustwor-
thiness level, as shown in Table 7, and each experiment is run
100 times to average out the variance of the response time.
In Figure 4 we report the results of the experiments for the
four queries, panels Q1, Q2, Q3, and Q4, respectively, for
the five different trustworthiness levels. Figure 5 shows the
(possible) impact of generalization on the data accuracy, as
measured by the Precision metric (Prec) [22], which counts
the average number of generalization steps performed on the
generalization trees (cf. Figure 2 and Figure 3).

For Q1, we observe that the anonymization process in-

Table 5
Queries

Q1: Data about male respondents
SELECT * FROM ADULT
WHERE SEX = ‘‘Male’’;

Q2: Data about adults between 30 and 75 years old
born in the United States
SELECT * FROM ADULT
WHERE AGE BETWEEN 30 AND 75
AND NATIVE-COUNTRY = ‘‘United-States’’;

Q3: Data about adults between 30 and 35 years old
working in the private sector and originally from the
american continent excluding United States
SELECT * FROM ADULT
WHERE WORKCLASS = ‘‘Private’’
AND AGE BETWEEN 30 AND 35
AND NATIVE-COUNTRY IN
(<America Excluding the United-States>);

Q4: Data about adults without-pay
SELECT * FROM ADULT
WHERE WORKCLASS = ‘‘Without-pay’’

Table 6
Size and disclosure risk level of the views returned in re-
sponse to the queries

Query Size Anonimity Risk level
Q1 20,380 1 High
Q2 19,392 32 Low
Q3 215 1 High
Q4 14 1 High

creases significantly the response time. Indeed the query
is carried our by the most trusted user (α = 1), with
no anonymization needed, takes on average 8ms (see Fig-
ure 4.Q1, horizontally striped bar corresponding to α = 1).
By decreasing the trustworthiness of the requester the view
must be anonymized and the average response time increases
to 27ms (cf. Figure 4.Q1, horizontally striped bar corre-
sponding to α = 0.52). This time difference is entirely due
to the anonymization time (19 ms, as shown in Figure 4.Q1,
diagonally striped bar corresponding to α = 0.52). Decreas-
ing further the trust level results in additional anonymiza-
tion. Also the attribute NATIVE-COUNTRY (NC) gets
anonymized (cf. Figure 5.Q1), but this does not significantly
affect the response time (see Figure 4.Q1).

We can observe a similar behavior in the other queries (see
Figure 4.Q2, Q3, and Q4), with an increase of response time
when anoymization takes place and no significant variations
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Table 7
User roles and trustworthiness

User Name Role Trustworthiness
Alice SuperUser 1
Megha Admin 0.52
Dana SeniorDataAnalyst 0.1
Frida JuniorDataAnalyst 0.028
Eliyes IT 0.015

in performance for different levels of anonymization. For
instance, for Q2 we have a view with an already high level
of anonymity (k = 32), and a small anonymization (a single
level of generalization for the Age attribute, see Figure 5.Q2
for α = 0.015) still significantly impacts the performance.
In case of Q3 we see that, despite different combinations
of anonymization strategies for different values of α (Fig-
ure 5.Q3), the response time is not affected (Figure 4.Q3),
except for α = 1 where we have no anonymization. We
should note that for Q3 (as well as Q4) the difference in
the average response time with and without anonymization
is relevant (α = 1 has response time of 0.16ms, and α = 0.52
of 1.6 ms) but these views have few tuples and these times
are small in absolute value, with large fluctuations, as shown
by the high standard deviations.

Q4 is characterized by a low cardinality and (conse-
quently) by high anonymity. Except for the maximum trust
value the data are strongly anonymized and for low trust lev-
els α = 0.28 and α = 0.015 access is denied in spite of the
anonymization, see Figure 5.Q4. Note that in these cases, the
anonymization engine tries to minimize the risk (anonymiza-
tion time is not zero, see Figure 4.Q4), but due to the low
cardinality no solution is found.

From these experiments, we observe that when
anonymization is applied the response time increases
significantly, but, even in the worst cases, the increase is
far less than one order of magnitude with no impact on the
real-time response of the system. Moreover, the application
of different anonymization strategies have no impact on the
response time.

The experiments were carried out using a MacBook Air
with the operating system OS X 10.8.5, processor 1.3GHz
Intel Core i5, memory 8GB 1600Mhz DDR3 and flash stor-
age 120GB.

9 Related Work

Risk-aware access control (see, e.g., [4, 5, 6, 10, 21]) has
received a growing attention in the last few years. However,
little attention is given to privacy aspects. The approaches
that address privacy (see, e.g., [18, 16]) do so by adding pri-
vacy policy enforcement on top of the access control evalu-
ation process. In our approach privacy risk as well as access
risk are evaluated for every access request.

Risk Aware Access Control Models generally determine
the risk as a function of the likelihood of a permission mis-
use and the cost of the permission authorized and misused.
The likelihood of misuse can depend on the user trustwor-
thiness and competence [4], the user behavior [1], and the
uncertainty of the access decision [17]. The quantification of
the cost of permission misuse has been addressed by several
researches. Cheng et al. [6], in their assign a sensitivity label
to every resource. The value of a resource is then determined
according to its sensitivity. The cost of a misused permis-
sion depends on the resource’s value. Molloy et al. [17] and
Baracaldo et al. [1] propose to evaluate the cost in term of fi-
nancial gain and damage. Chen and Crampton [4] do not ex-
plicitly calculate the permission misuse cost in their model,
but mention that the cost of misuse is valued and used to
define risk thresholds and risk mitigation strategies for every
permission. In our model the risk results from the likelihood
of identity disclosure which depends on the sensitivity of the
requested information and the requestor trustworthiness.

Chen et al. [5, 14] propose to use, both user and system
obligations as risk mitigation methods. An obligation de-
scribes some actions that have to be fulfilled by the sub-
ject, the system or a third part (e.g.an administrator), in a
specific time window. In the literature we can distinguish
between two categories of obligations: provisions or pre-
obligations [2] are actions that must be executed prior to
making an authorization decision; post-obligations are ac-
tions that must be fulfilled after the authorization decision is
made. Unlike Chen et al. models that use post-obligations,
monitor the fulfillment of these obligations after granting ac-
cess and reward or punish users according to whether they
have succeed or not to fulfill the required action, in our model
we use provisions to enforce the risk mitigation strategy at
run-time.

10 Conclusions

We have presented a model for information disclosure
where access-control decisions are based on the risk asso-
ciated with a data access request. Anonymization operations
are used as risk-mitigation methods to compute views satisfy
the accepted level of risk. This allows for granting access to
requests that would otherwise be rejected. Our model lever-
ages existing modes for Risk-Aware Access Control (most
notably [5, 4]) but it also shows how they can be adapted
so to support the controlled disclosure of privacy-sensitive
information. We confirmed the feasibility of our approach
by developing a prototype implementation of the proposed
model and assessing it against a dataset widely used by the
research community.
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