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Abstract. Risk-aware access control systems grant or deny access to
resources based on some notion of risk. In this paper we propose a
model that considers the risk of leaking privacy-critical information when
querying, e.g., datasets containing personal information. While querying
databases containing personal information it is current practice to as-
sign all-or-nothing access to avoid the disclosure of sensitive information.
Using our model, access-control decisions are based on the disclosure-
risk associated with a data access request and, differently from existing
models, we include adaptive anonymization operations as risk-mitigation
methods. By applying these operations, a request that would otherwise
be rejected, is permitted after reducing the risk associated with the re-
turned dataset.

1 Introduction

The increasing availability of large and diverse datasets (Big Data, such as cus-
tomer data, transactions, demographics, product ratings) helps businesses to get
insights on their markets and their customers’ needs, and predict what is next.
It is also boosting the creation of new data monetization businesses, where com-
panies package their data and sell them to other organizations. According to
IDC [17] the market for Big Data business will reach 16.9 billion USD by 2015,
up from 3.2 billion USD in 2010.

The full exploitation of big data raises various issues on the possible disclo-
sure of sensitive or private information. In particular, big data often contain a
large amount of personal information, which is subject to multiple and stringent
regulations (EU data protection directive, HIPAA5, etc.). These regulations im-
pose strong constraints on the usage and transfer of personal information, which
make their handling complex, costly, and risky from a compliance point of view.
As a consequence, personal data are often classified as confidential information,
and only a limited number of business users (e.g., high level managers) have
access to them, and under specific obligations (e.g., within the perimeter of the
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company network, no transfer to mobile devices, etc.). As a matter of fact, be-
cause of the difficulty of dealing with the potential privacy implications in an
efficient and systematic way, an all-or-nothing decision is often followed; by using
this approach, many business users are just prevented from retrieving data from
databases as soon as these databases contain, even if only in few specific tables,
some personal information. However, many business applications (e.g., business
analytics and reporting, recommendation systems) do not need all the personal
details on specific individuals, and an anonymized version of the dataset is still
an asset of significant value that can address the business requirements in most
cases.

Anonymization methods can be applied to obfuscate the personal identifi-
able information, such as suppressing part of or entire records; generalizing the
data, i.e., recoding variables into broader classes (e.g., releasing only the first two
digits of the zip code) or rounding numerical data; replacing identifiers with ran-
dom values (e.g., replacing a real name with a randomly chosen one), randomly
swapping some attributes in the original data records, applying permutations or
perturbative masking, i.e., adding random noise to numerical data values.

To assess the level of anonymity, several metrics have been proposed in the
literature (see [3, 8] for a review). These metrics differ in a number of ways,
but they all express the risk of disclosing personal-identifiable information when
releasing a given dataset. Based on these metrics, several anonymization methods
have also been put forth [7]. These methods increase protection by lowering the
privacy risk and by enabling a wider exploitation of the data, but they assume
the accepted risk level is statically given. In practice the accepted risk level may
depend on a number of factors that can only be computed at run-time, e.g., the
trustworthiness or the competence of the user or the quality of the security
context used to issue the query.

In this paper we propose an access control model for risk-aware information
disclosure. In our model access-control decisions are based on the disclosure-risk
associated with a data access request and, differently from existing models, we
include adaptive anonymization operations as risk-mitigation methods. By ap-
plying these operations, a request that would otherwise be rejected, is permitted
after reducing the risk associated with the returned dataset.

Structure of the paper. In the next section we provide a representative, real-world
scenario that illustrates the motivation for risk-aware information disclosure. In
Section 3 we recall some background notions on risk-aware access control and
privacy preserving information disclosure. In Section 4 we present our access
control model for risk-aware information disclosure and in Section 5 we illustrate
its application on the scenario introduced in Section 2. In Section 6 we discuss
the related work. We conclude, in Section 7, with some final remarks.

2 Scenario

Employee surveys are a widely used instrument for organizations to assess job
satisfaction, quality of management, people motivation, etc. Considering the



possible sensitiveness of data, surveys should be anonymous, meaning that the
organization and management should not be able to identify how a specific em-
ployee responded. Usually, the organization – say, a large company – conducting
the survey outsources the data collection to a third-party. When processing the
data, the third-party has access to individual-level information, whereas this
data is not accessible to the company. To protect the anonymity of the survey,
the company can access the data under the condition that (i) identifiers are
removed and (ii) the number of respondents is larger than a certain thresholds
(usually between 10 and 25). Different splits of data can be requested (e.g., per
organization, per job profile, etc.), but data are accessible only if the query re-
sults contains a number of respondents that is larger than the fixed thresholds.
On top of that, additional access control rule can be enforced, e.g., a manager
would only see data referring to his/her team or department (provided that
conditions (i) and (ii) are also fulfilled); an employee would be allowed to see
overall (company results) only. As an example, consider a question like “Do you
respect your manager as a competent professional?” with a five points scale (1
to 5). A manager could see the response of his/her team if at least, say, 10 peo-
ple answered to it. If the manager decides to refine the analysis asking for data
related to the people in his/her team AND with a “developer” role, again the
response should be made available only if at least 10 respondents with that role
answered to the question.6. Current systems typically do not provide any data
if the number of respondents is below the defined thresholds (for the specific
role). In other words, in order to avoid the risk of disclosing too much infor-
mation, an overly conservative approach is taken and problematic queries are
not permitted altogether. Ideally, the access control system should be able to
provide the largest possible amount of information (still preserving anonymity)
for any query. In practice, in presence of queries that might cause anonymity
issues (i.e., not enough respondents, or more generally, too small result set),
the system should be able to quantify the disclosure risk associated with the
query and compare it with whatever risk level has been set as the acceptable
threshold. If the threshold is exceeded, the system could apply, for example, a
“generalization” operation (making the query less specific), thus increasing the
cardinality of the result set and reducing the risk of disclosing the identity of
respondents. Of course, applying such operation would not yield the exact data
set the user asked for, but this method would: 1) provide some relevant (i.e., as
close as possible to the original query) information to the user, and 2) preserve
anonymity according to some pre-defined disclosure-risk levels (possibly linked
to the requestor trust or role).

In the next section,we discuss how to implement such a system using risk-
based access control, and anonymization mitigation strategies.

6 In real surveys single records are actually never shown, but just percentages, in this
example it would be something like 10% answered 1, 25% answered 2, etc. Since
the number of respondents is known, in practice, for one question, this equivalent of
getting the data with no identifiers.



3 Background

In this section, we present a Risk Aware Access Control model introduced in
earlier work by Chen et al. [5, 4]. We also present some privacy concepts and
the "k-anonymity" model for preserving privacy [18], since it is the mostly used
metrics for anonymity for surveys.

3.1 Risk-Aware Access Control

We provide a brief presentation of the formal model for Risk-Aware Access Con-
trol (RAAC) that has been introduced in [5]. We use this model as the basis of
our access control model for risk-aware information disclosure that is presented
in Section 4.

Formally, a RAAC consists of the following components:

– a set of users U ;
– a set of permissions P , usually representing action-object pairs;
– a set of access requests Q, modeled as pairs of the form (u, p) for u ∈ U and
p ∈ P ;

– a set of risk mitigation methods M, i.e., actions that are required to be
executed to mitigate risk;

– a function π mapping permissions into risk mitigation strategies, i.e., lists of
the form [(l0,M0), (l1,M1), . . . , (ln−1,Mn−1), (ln,Mn)], where 0 = l0 < l1 <
· · · < ln−1 < ln ≤ 1 and Mi ∈M for i = 0, . . . , n;

– a set of states Σ, i.e., tuples of the form (U,P, π, τ) where τ abstracts further
specific features of the state; for instance, in the Risk-Aware Role-Based
Access Control (R2BAC) model [4], τ comprises the set of roles R, the user-
role assignment relation UA ⊆ U×R, the role-permission assignment relation
PA ⊆ P × R, the role hierarchy �⊆ R × R, and the user trustworthiness
α : U → (0..1], the user-role competence function β : U × R → (0..1], and
the role-permission appropriateness function γ : R× P → (0..1];

– a risk function risk : Q × Σ → [0..1] such that risk(q, σ) denotes the risk
associated to granting q in state σ;

– an authorization decision function Auth : Q × Σ → D × 2M with D =
{allow, deny} such that if q = (u, p) and π(p) = [(l0,M0), . . . , (ln,Mn)], and
σ the current state, then

Auth(q, σ) =

{
(di,Mi) if risk(q, σ) ∈ [li, li+1), i < n,

(dn,Mn) otherwise

where di ∈ D. Intuitively, if the risk associated with access request (u, p) is
l, then Auth returns an authorization decision and a set of risk mitigation
methods corresponding to the interval containing l.



3.2 Privacy Preserving Information Disclosure

From a data privacy standpoint, the data stored in database tables and the
columns (data attributes) of the tables can be classified as follows.

– Identifiers. These are data attributes that can uniquely identify individuals.
Examples of identifiers are the Social Security Number, the passport number,
the complete name.

– Quasi-identifiers (QIs) or key attributes [9]. These are the attributes that,
when combined, can be used to identify an individual. Examples of quasi-
identifiers are the postal code, age, job function, gender, etc.

– Sensitive attributes. These attributes contain intrinsically sensitive informa-
tion about an individual (e.g., diseases, political or religious views, income)
or business (salary figures, restricted financial data or sensitive survey an-
swers).

Various anonymity metrics have been proposed so far (see [3, 8] for a review).
In this paper we concentrate on a very popular metric, k-Anonymity [18]. Other
metrics are presented in Section 6. k-Anonymity condition requires that every
combination of quasi-identifiers is shared by at least k records in the anonymized
dataset. A large k value indicates that the anonymized dataset has a low identity
privacy risk, because, at best, an attacker has a probability 1/k to re-identify
a record (i.e., associate the sensitive attribute of a record to the identity of a
person).

4 Risk-Aware Information Disclosure

We now refine the RAAC model of Section 3.1 into our model for Risk-Aware
Information Disclosure. Let P be a set of database views (or virtual tables).
If p is a view, then |p| denotes the anonymity of p according to some given
metrics (e.g. k-anonymity). The higher is the value of |p|, the smaller is the risk
to disclose sensitive information by releasing p. Thus, for instance, we can define
the (privacy) risk of disclosing p to be 1/|p| and the (privacy) risk of disclosing
p to u in σ = (U,P, π, τ) to be

risk((u, p), σ) =

{
1 if not grantedτ (u, p)
1/|p| otherwise

where grantedτ (u, p) holds if and only if u is granted access to p according to τ .
For instance, if τ is an RBAC policy (U,R, P, UA,RA,�), then grantedτ (u, p)
holds if and only if there exist r, r′ ∈ R such that (u, r) ∈ UA, r � r′, and
(p, r′) ∈ PA.

When the risk associated to the disclosure of a certain view p is greater
than the maximal accepted risk t, we can use obligations for obfuscating or
redacting the view and thus bring the risk below t. In this paper we consider
k-anonymization functions φk : P → P for k ∈ N as risk mitigation methods,
but functions based on other metrics can be used as well. Clearly |φk(p)| ≥ k



for all p ∈ P . We then consider risk mitigation strategies of the form π(p) =
[(0, ι), (t, φd1/te(.))], where ι : P → P is the identity function (i.e. such that
ι(p) = p for all p ∈ P ) and the following authorization decision function:

Auth((u, p), π) =

{
(allow, ι) if risk(u, p) < t,

(allow, φd1/te(·)) if risk(u, p) ≥ t

that always grants access but yields an anonymized version of the requested view
if the risk is greater that the maximal accepted risk t. In other words, if user
u asks to access p, then access to p is granted unconditionally if risk(u, p) < t,
otherwise an anonymized version of p, say φd1/te(p), is computed and returned
to u.

Example 1. To illustrate assume Alice asks for a view p1 such that |p1| = 4 and
that π(p1) = [(0, ι), (t, φd1/te(.))] with t = 0.1, i.e. π(p1) = [(0, ι), (0.1, φ10(.))]. It
is easy to see that risk(Alice, p1) = 0.25 and that Auth((Alice, p1), π) = φ10(p1).

Alice then asks for a view p2 such that |p2| = 20 and that π(p2) = π(p1) =
[(0, ι), (t, φd1/te(.))] with t = 0.1, i.e. π(p2) = [(0, ι), (0.1, φ10(.))]. It is easy to
see that now risk(Alice, p2) = 0.05 and therefore that Auth((Alice, p2), π) =
ι(p1) = p1.

The following results state that the risk of disclosing the view returned by
our authorization decision function is never greater than the maximum accepted
risk.

Proposition 1. Let (D,M) = Auth((u, p), π). Then risk(u,M(p)) ≤ t.

In many situations of practical interest, we want the risk of a query q =
(u, p) to depend also on the trustworthiness of the user u. This can be done by
(re)defining the risk function as follows:

risk((u, p), σ) =

{
1 if not grantedτ (u, p)
max{0, 1

|p| − α(u)} otherwise
(1)

where α : U → (0..1] is a function that assigns a trust value to users.
When roles correspond to job functions, it is natural to assign trust to roles

and to derive the trust of a user from the trust assigned to the roles assigned to
that user in the following way:

α(u) = max{α(r′) : (p, r′) ∈ PA and ∃r � r′ s.t. (u, r) ∈ UA}.

5 Application of Risk-Aware Role-Based Access Control

We now show how our risk-aware information disclosure model can be used to
support the scenario of Section 2. This will be done by setting appropriate values
to the parameters occurring in the definition of the risk function (1).



For sake of simplicity we consider a small company, with 8 employees and
one manager. The company runs an employee survey, with one single question
with answer ranging in a five points scale (from 1 to 5) (sensitive attribute,
cf. Section 3.2), and collecting user names7 (the identifiers), as well as the job
title and the location of the office (the quasi-identifiers). The actual dataset is in
Table 1(a). To preserve privacy we set the maximal acceptable risk to t = 0.125.

Table 1. The Employee Survey Example

(a) Original dataset

Survey Administrator view
|pall| = 1

Name Job Location Answer
Timothy SeniorDeveloper Houston 4
Alice Support Houston 5
Perry JuniorDeveloper Rome 5
Tom Admin Rome 3
Ron SeniorDeveloper London 4
Omer JuniorDeveloper London 4
Bob Support Houston 5

Amber Admin Houston 3

(b) Anonymized version: iden-
tifiers and quasi-identifiers are
suppressed

Employee View
|psupp| = 8

Name Job Location Answer
*** *** *** 4
*** *** *** 5
*** *** *** 5
*** *** *** 3
*** *** *** 4
*** *** *** 4
*** *** *** 5
*** *** *** 3

The outsourcing company collecting the data is considered fully trusted and
will therefore have access to all the information. We model this by setting the
trust of the admin role to 1, i.e. α(admin) = 1. Thus, an administrator can
access the original dataset, say pall with anonymity |pall| = 1 (i.e., all distinct
values, see Table 1(a)), since α(admin) = 1 and the risk value is smaller than the
threshold, i.e., 1 − 1 = 0 < 0.125. If we set the trust value of the manager role
to 0.21, i.e. α(manager) = 0.21 (corresponding to access views with anonymity
k ≥ 3), than a manager cannot access pall as is, since 1− 0.21 > 0.125 and some
anonymization, as risk mitigation strategy, must be carried out on the data to
decrease the risk. For example, if we suppress the identifier attribute (Name)
and the quasi-identifiers (Job and Location), we obtain the view psupp shown in
Table 1(b). The view psupp corresponds to an anonymity level |psupp| = 8 and
since 0.125− 0.21 < 0.125, access is granted to the manager.8 The manager can
also ask for more granular views of the results. For example, if she wants to know
the distribution of the answers in one location, say Houston, |pHoust| = 4, the risk
0.25− 0.21 = 0.04 is still smaller than t = 0.125. On the other hand, if she asks
for the result in Rome, |pRome| = 2, then the risk associated with the view for
7 In real cases they are typically user IDs
8 In real surveys the result will appear as a report like: 37.5% answered 5, 37.5%
answered 4 and 25% answered 3. For a single question this is equivalent to the view
in Table 1(b).



Table 2. Views of the employee survey for the Rome location

(a) Before generalization.

View: Location=Rome, |pRome| = 2

Name Job Location Answer
*** *** Rome 5
*** *** Rome 3

(b) After generalization

View: Location=Rome
Anoymized |pEMEA| = 4

Name Job Location Answer
*** *** EMEA 5
*** *** EMEA 3
*** *** EMEA 4
*** *** EMEA 4

the manager is 0.5 − 0.21 > 0.125 and the access is granted only if appropriate
anonymization is performed. In this case, location could be generalized from
Rome to EMEA (so including London workforce), as shown in Table 2(b). The
resulting view has anonimity |pEMEA| = 4 and since the risk is smaller than
t = 0.125, then the manager is allowed to see the view.

Table 3. Views of the employee survey for Rome and JuniorDeveloper

(a) Before generalization of location and job

Loc=Rome AND Job=JuniorDeveloper
|pRome+JuniorDeveloper| = 1

Name Job Location Answer
*** JuniorDeveloper Rome 5

(b) After generalization of location and job

View Loc=Rome AND Job=JuniorDeveloper
Anonymized |pEMEA+Dev| = 3

Name Job Location Answer
*** Dev EMEA 5
*** Dev EMEA 4
*** Dev EMEA 4

Similarly, if the manager wants to see the results per location and per job
function (say in Rome for JuniorDeveloper only, see Table 3(a)), the anonymity
level is low, |pRome+JuniorDeveloper| = 1, and the associated risk is greater than
t = 0.125. Again, instead of simply denying access, the system can perform
generalization on both the quasi-identifiers, Job (generalized to the job family
developer) and Location, thereby increasing the anonymity (|pEMEA+Dev| = 3)
and decreasing the risk (risk(manager, pEMEA+Dev) = 0.123) to an acceptable
level for a manager (see Table 3(b)).

Finally, employees should have access to the global results only. The trust
value is therefore set to α(employee) = 0.125 and the only view permitted is
with suppression of all identifiers and quasi-identifiers, which has |psupp| = 8,
see Table 3(b).



6 Related Work

Risk-aware access control (see, e.g., [4–6, 10, 19]) has received a growing attention
in the last few years. However, little attention is given to privacy aspects. The
approaches that address privacy (see, e.g., [16, 14]) do so by adding privacy policy
enforcement on top of the access control evaluation process. In our approach
privacy risk as well as access risk are evaluated for every access request.

Risk Aware Access Control Models generally determine the risk as a function
of the likelihood of a permission misuse and the cost of the permission authorized
and misused. The likelihood of misuse can depend on the user trustworthiness
and competence [4], the user behavior [1], and the uncertainty of the access
decision [15]. The quantification of the cost of permission misuse has been ad-
dressed by several researches. Cheng et al. [6], in their assign a sensitivity label
to every resource. The value of a resource is then determined according to its
sensitivity. The cost of a misused permission depends on the resource’s value.
Molloy et al. [15] and Baracaldo et al. [1] propose to evaluate the cost in term
of financial gain and damage. Chen and Crampton [4] do not explicitly calculate
the permission misuse cost in their model, but mention that the cost of misuse
is valued and used to define risk thresholds and risk mitigation strategies for
every permission. In our model the risk results from the likelihood of identity
disclosure which depends on the sensitivity of the requested information and the
requestor trustworthiness.

Chen et al. [5, 12] propose to use, both user and system obligations as risk
mitigation methods. An obligation describes some actions that have to be ful-
filled by the subject, the system or a third part (e.g.an administrator), in a
specific time window. In the literature we can distinguish between two cate-
gories of obligations: provisions or pre-obligations [2] are actions that must be
executed prior to making an authorization decision; post-obligations are actions
that must be fulfilled after the authorization decision is made. Unlike Chen et
al. models that use post-obligations, monitor the fulfillment of these obligations
after granting access and reward or punish users according to whether they have
succeed or not to fulfill the required action, in our model we use provisions to
enforce the risk mitigation strategy at run-time.

In this paper we consider only k-anonymity as anonymity metrics, but alter-
native metrics do exist. A group (with minimal size of k records) sharing the same
combination of quasi-identifiers could also have the same sensitive attribute, so
even if the attacker is not able to re-identify the record, he can discover the sen-
sitive information (attribute disclosure). To capture this kind of risk `-diversity
was introduced [13]. The `-diversity condition requires that for every combi-
nation of key attributes there should be at least ` values for each confidential
attribute. Although, `-diversity condition prevents the possible attacker from in-
ferring exactly the sensitive attributes, he may still learn a considerable amount
of probabilistic information. More specifically, if the distribution of confidential
attributes within a group sharing the same key attributes is very dissimilar from
the distribution over the whole set, an attacker may increase his knowledge on
sensitive attributes (skewness attack, see [11] for details). To overcome the prob-



lem, t-closeness [11] estimates this risk by computing the distance between the
distribution of confidential attributes within the group and in the entire dataset.
These measures provide a quantitative assessment of the different risks associ-
ated to data release, and each of them (or a combination thereof) can be applied
to estimate privacy risk depending on the use case at hand.

7 Conclusions

We have presented a model for information disclosure where access-control deci-
sions are based on the risk associated with a data access request. Anonymization
operations are used as risk-mitigation methods to compute views satisfy the ac-
cepted level of risk. This allows for granting access to requests that would oth-
erwise be rejected. Our model leverages existing modes for Risk-Aware Access
Control (most notably [5, 4]) but it also shows how they can be adapted so to
support the controlled disclosure of privacy-sensitive information.
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